
1www.the-autonomous.com

Safe Automated Driving:
Requirements and
Architectures

Second Edition

3www.the-autonomous.com

AUTHORS

REVIEWERS

FORMER CONTRIBUTORS:

Abhijit Ambekar

Udo Dannebaum

Lucas Fryzek

Ayhan Mehmed

Friedrich Reisenberger

Bernhard Kaiser
Ansys Germany GmbH

Philip Koopman
Carnegie Mellon University

Martin Törngren

Sina Borrami

Naveen Mohan

Nahla Ben Mosbeh

Gabi Escuela

Marius Weiss

Jens Rosenbusch

Christoph Schulze

Chaitanya Shinde

Andrei Terechko
NXP Semiconductors N.V.

Jan Toennemann
Vector Informatik GmbH

Matthew Storr

Neil Stroud

Kazuhito Takenaka

Rasmus Adler

Simon Fürst

The Working Group Safety & Architecture would like to thank the reviewers of the report for their
valuable input and feedback.

Justin-Kiyoshi Tiele

Andrea Bondavalli

Shailesh MoreLead Contributor:

Moritz Antlanger

Working Group Lead:

Sascha Drenkelforth

Christian Mangold

Georg Niedrist

4 www.the-autonomous.com

CONTENTS
Authors ... 3

Reviewers .. 3

Contents ...4

Version History ..6
Key Updates of the Second Edition ..6

Report Summary ..7
Abstraction level and reference use case .. 7
System requirements, design constraints and design principles ..8
Candidate Architectures ...9
Implementation Considerations and Sufficient Independence ...13
Architecture Design and Standards Compliance ... 14

Introduction and purpose ... 16
The Autonomous ... 16
Working Group Safety & Architecture and its Scope .. 16
Purpose and structure of this document .. 18

1 Background and premises .. 20
1.1 Reference AD use case ..20
1.2 System boundary ...25
1.3 System safety requirements ... 27
1.4 Abstraction level ...28
1.5 General constraints and design principles ..29

2 Architecture evaluation criteria ..38
2.1 Architectural decisions and processes ...38
2.2 General requirements ...40
2.3 Availability ..42
2.4 Nominal Functionality ...44
2.5 Cybersecurity ..44
2.6 Scalability ...45
2.7 Simplicity ...46
2.8 Safety of the intended functionality (SOTIF) ... 47
2.9 Table of evaluation criteria ...49

3 Candidate architectures .. 52
3.1 Collection process ...54
3.2 Overview of architectural design patterns ..54
3.3 Monolithic architectures ..58
3.4 Symmetric architectures ...60
3.5 Asymmetric architectures ..71
3.6 Related examples from the industry ..86

4 Architecture evaluation ... 91
4.1 Evaluation process .. 91

5www.the-autonomous.com

4.2 Generic evaluation ... 91
4.3 Specific evaluation in the context of the reference AD use case 141

5 Implementation considerations ..153
5.1 HW considerations ...153
5.2 SW considerations ... 155
5.3 Standards for Development of Safe AD Systems ... 161
5.4 Sufficient Independence ..178

Outlook ... 197

Terminology ...198
Terminology from standards and literature ... 198

References .. 203

List of abbreviations ... 208

Appendices .. 210
ODD outline of reference AD use case ...210
Classification of Trajectory Capability ..216
Sample analysis points regarding different conceptual architecture patterns 218

6 www.the-autonomous.com

VERSION HISTORY
Version Date Revision description

2.0 15.09.2025 Second edition

1.0 01.12.2023 Initial release

KEY UPDATES OF THE SECOND EDITION
Since the release of the first edition report in late 2023, the following major changes and
additions have been implemented:

• Candidate architectures
Three new candidates for the conceptual system architecture of an AD Intelligence have
been identified, described, and evaluated, namely the Cross-Checking Pair, Daruma, and
AD-EYE architectures.

• Relevant safety standards
The analysis and discussion of safety standards relevant in the development of an AD
Intelligence has been greatly extended. The following regulations and standards have
been considered: UNECE R157, ISO/IEC TR 5469, ISO/PAS 8800, UL 4600, and ISO/TS
5083.

• Sufficient Independence
A detailed discussion how to achieve Sufficient Independence between the subsystems
making up an AD Intelligence has been added. This includes a semi-quantitative scheme
“Independence Coverage” for evaluating whether Sufficient Independence has been
achieved.

• Implementation considerations
Additional aspects relevant for the mapping of conceptual system architectures to
hardware and software implementations have been considered, e.g., crypto agility for
post-quantum cryptography.

• Architecture descriptions
The diagram style and level of depth of the architecture descriptions have been made
more consistent to allow easier comparison between different candidate architectures.

• Terminology
The terminology used throughout the document has been improved and made more
consistent.

7www.the-autonomous.com

REPORT SUMMARY
The Autonomous is an initiative and open platform bringing together leading executives and
experts of the mobility ecosystem to align on subjects relevant to the safety of autonomous
driving (AD); in its Safety & Architecture Working Group, members of international research
institutes and industrial companies came together to investigate what the system-level
conceptual architecture of an automated vehicle could look like, in order to address the safety
challenges of automated driving.

This report was compiled from June 2021 to December 2023 for its first edition, and from 2024
through 2025 for the second edition which is presented here; both editions were accompanied
by external reviewers from industry and academic experts.

Our work is structured as follows: we start by outlining the reference use case of an SAE L4
Highway Pilot (HWP), derive key system requirements, and establish general constraints and
well-known design principles for implementing such a use case in an AD system. We continue
with candidate architectures from market and literature research and derive their properties,
then compare the architectures with respect to a set of criteria that we consider crucial (such
as system availability, robustness, and scalability). Finally, we conclude with development and
implementation considerations (like the challenge of Sufficient Independence between
redundant elements), and discuss the impact of relevant standards and of security
requirements on the architectures.

The intended readers are system owners who make architectural decisions and ensure
consistency on many different abstraction levels, from high-level conceptual architectures to
low-level physical implementations. Our intention is to support them in making such decisions
and building up a safety argumentation.

ABSTRACTION LEVEL AND REFERENCE USE CASE

It is commonly understood and accepted that the development of a safe automated driving
system for complex driving tasks is a big challenge. Even when developed to the highest
standards, complex HW and SW elements will exhibit faults and functional insufficiencies that
can materialize anytime. Still, the overall autonomous driving system needs to tolerate
malfunctions and keep up operation at least for a minimum time frame – i.e., it needs to be
fail-degraded. A well-chosen architecture is indispensable to manage the complexity of
autonomous driving systems and to ensure fault tolerance in an effective and efficient way.

For our analysis, we have chosen what we call
the conceptual system architecture level: we
consider the system as a set of well-
encapsulated subsystems that can comprise up
to an entire processing channel, or at least a
dedicated subset of the overall functionality.

As our reference use case, we chose an SAE
Level 4 Highway Pilot to act as a backdrop for
compiling assumptions and deriving system
requirements and design principles applicable
to conceptual system architectures. Similar
features are being offered in a limited way on

SAE Level 4 130
km/h

8 www.the-autonomous.com

the market today (as of 2025, L2 Highway Assistant systems and L3 systems with restrictions on
speed, lane changes, and lead vehicles) and a (user-owned) SAE L4 HWP with full
functionality is expected within the next few years; it will need to deal with complex traffic
situations and will necessitate non-trivial system architectures due to high availability
requirements and complexity.

SYSTEM REQUIREMENTS, DESIGN CONSTRAINTS
AND DESIGN PRINCIPLES
The Safety & Architecture Working Group focuses on a part of the AD system providing the
central driving algorithms, which we call the Automated Driving Intelligence (ADI). This system
covers all cognitive tasks previously performed by the driver. A simplified representation is
shown on the left, illustrating the four other systems the ADI is connected to, as well as the
elements that “close the loop” with the physical environment.

A set of key system requirements (summarized in the table on the right) should be applied to the
ADI to ensure the safety of commands to the actuators. Besides the expected timeliness,
correctness, and consistency of commands, their availability is highly safety-relevant for an SAE
L4 function. Additionally, an ADI architecture shall foresee self-diagnostic mechanisms and
shall support detecting and handling functional insufficiencies (including but not limited to the
perception functions).

S1 ADI output timeliness

S2 ADI output availability

S3 ADI output correctness

S4 ADI output consistency

S5 Perception malfunction detection

S6 ADI diagnostics

Physical environment & vehicle platform

D
riv

er
 &

 p
a

ss
en

g
er

s

Ex
te

rn
a

l s
ys

te
m

s
&

cl
ou

d

AD
Intelligence

Sensor
System

Actuator
System

UI
System

Diagnostics
System

Vehicle

9www.the-autonomous.com

When coming up with conceptual system architectures intended to satisfy these system
requirements, technological limitations constrain how high-reliability systems can be designed,
built, and tested using realistic HW and SW components. Such general constraints need to be
addressed by an architecture for automated driving, e.g.: it is impossible to avoid design faults
and single-event upsets in large and complex monolithic systems, and it is impossible to
achieve high availability by testing or to specify all edge cases that an AD function must cope
with.

In addition, well-established practices should be respected in a sound conceptual system
architecture. We identify such design principles, e.g., including using well-encapsulated
independent subsystems (“Fault Containment Units”, FCUs), applying diversity and
redundancy, preventing emergent behavior by limiting interactions between subsystems, and
mitigating hazards by adopting the Swiss cheese model.

CANDIDATE ARCHITECTURES
From industry publications, academic papers, and patent publications we have identified
candidate architectures and grouped them into three basic categories of conceptual system
architectures:

1. MONOLITHIC ARCHITECTURES
represent the status quo for SAE L2 systems and are a natural
basis for incremental development to L4 systems.

2. SYMMETRIC ARCHITECTURES
rely on multiple channels providing the same or similar
functions, often with some voting mechanism for arbitration.

3. ASYMMETRIC ARCHITECTURES
employ diverse decompositions to reduce the complexity of
some subsystems, e.g., via monitoring elements or fallback
channels with reduced functionality.

10 www.the-autonomous.com

These architectures employ several underlying patterns the most significant ones are as follows:

• The Arbitration pattern manages redundancy by deciding (e.g., voting) between equal
channels. The Agreement pattern is similar, but without an external arbiter.

• The Doer / Checker pattern asymmetrically decomposes (for correctness) a channel into
a Doer performing the intended function and a Checker approving it.

• The Active / Hot Stand-By pattern asymmetrically decomposes (for availability) into a
preferred Main channel and – if that is not available – a Fallback channel.

A representative of monolithic architectures is the Single-Channel architecture, where a single
ECU performs all tasks of the AD Intelligence, i.e., processes the sensor data into a consistent
environmental model, generates trajectories and, finally, set points for the actuators.
Examples of this architecture are the AUDI zFAS originally intended for an SAE L3 Traffic Jam
Pilot (2017), Tesla’s “Full Self Driving” (FSD)1, or monolithic end-to-end AI systems.

The Majority Voting architecture as a representative of the symmetric architectures implements
a set of channels (three or more), each of which can perform the full nominal function. The voter
compares (exactly or inexactly) the channels’ results and forwards the majority opinion to the
actuators. If all three results differ, no decision can be made. To achieve fault tolerance,
multiple instances of the voter may be necessary.

The Cross-Checking Pair is another symmetric architecture and is inspired by the deceptively
simple approach of constructing a fail-operational system by “making two channels that check

Arbiter (Switch)

Hot Stand-By

Active
output

output

Arbiter (Decider)

Checker

Doer
output

yes/no

Subsystem 2 Arbiter (Voter)

...

Subsystem 1
output

output

1 As far as can be judged from available documentation.

11www.the-autonomous.com

each other”. The mutual cross-check of the (complex) channels is augmented by two simpler
selectors that collect actuator commands and validation results from the channels and forward
the best-ranked actuator commands that are considered safe by both channels.

The Daruma architecture can be considered an extension of the cross-checking pair
architecture; it consists of three complex channels that each output a trajectory (possibly with
different focus, e.g., nominal vs. safety) and their environmental model. A “Daruma” subsystem
cross-checks all output trajectories against all environmental models and ranks the channel
outputs according to safety and performance criteria. Finally, two redundant selectors forward
the best ranked results to the actuator system.

The first of the considered asymmetric architectures is the Channel-Wise Doer/Checker/
Fallback architecture, where a Doer performs the nominal driving function and can resemble
an SAE L2 system, while a Fallback performs only Minimal Risk Maneuvers. A Checker validates
both the Doer’s and the Fallback’s output. A Selector receives the Checker’s verdict and
forwards either the trajectory from the Doer or from the Fallback to the actuators. Doer/
Checker/Fallback are complex subsystems, and each of them can fail arbitrarily. They are
implemented in a diverse way to minimize common cause failures, to ensure sufficient
independence. The Selector is simple, has low performance requirements, and can be fully
verified to preclude systematic faults. To achieve fault tolerance, it consists of redundant
instances.

Another asymmetric architecture is the Layer-Wise Doer/Checker/Fallback, a dual-channel
approach with at least one primary and one safing channel, which provides a degraded mode
of operation in case the primary channel fails. Each channel consists of Doer/Checker pairs,
arranged in multiple layers of the Sense-Plan-Act model. A Priority Selector determines the
output to be sent to the actuators, depending on the states of the channels. The Priority Selector
is a high safety integrity component, simpler than the Checkers. It must continue to operate in
the presence of failures to deliver either the primary or the safing output, or to trigger an
emergency stop. It may fail silently so long as that failure triggers an emergency (blind) stop as
a very rare last resort.

The Distributed Safety Mechanism architecture can be seen as a more complex, distributed
variant of the Doer/Checker/Fallback approach. The architecture is composed of three
channels, each of them containing safety monitors – a Nominal Channel, consisting of the
function itself and controlled by a Function Monitor, an Emergency Channel, which is controlled
by a Controller Safety Mechanism, and a Safety Channel, which is controlled by a Vehicle
Safety Mechanism. The Function Monitor is checking for SOTIF issues, the Controller Safety
Mechanism is responsible for monitoring all the function controllers (including hardware and
software platforms) and the Vehicle Safety Mechanism. The Vehicle Safety Mechanism is
responsible for monitoring the communication networks and the Controller Safety Mechanism.
It can send control commands to the vehicle actuators in case of comfort or safe stop, by using
independent sensor data.

As a final asymmetric example, we study the AD-EYE architecture, which resembles the
Channel-wise Doer/Checker/Fallback architecture. It employs a complex main channel with
built-in degradation and recovery mechanisms to cope with manageable (e.g., temporary)
faults, and a simpler secondary channel with a validation component for the main channel
and a robust fallback capability. The validation component monitors the main channel and
can restrict its operational envelope for a graceful degradation; only for the most severe faults
is the fallback capability used. Finally, two redundant selectors forward the results from either
the main channel or the fallback capability to the actuator system, based on the decision of the
validation component.

12 www.the-autonomous.com

ARCHITECTURE EVALUATION METHODOLOGY AND
CRITERIA
We evaluate the presented architectures with respect to several key criteria:

• Availability: to what extent would the architecture support the fail-operational property,
i.e., enable safe operation even in the case of unavoidable electronic or software faults?

• Reliability: would continuity of the nominal functionality be well supported, to help ensure
a positive user experience, e.g., by avoiding function degradation?

• Cybersecurity: would the architecture be susceptible to security threats, or would it
support resilience measures against attacks?

• Scalability: to what extent would cost-efficient downscaling to lower SAE levels (for vehicle
options), or upscaling to higher SAE levels (for future enhancements), be supported?

• Simplicity: is the architecture be conceptually simple, to support modular development,
verification, and validation?

• Safety of the Intended Functionality: would the architecture help ensure robustness and
safe operation in the presence of functional imperfections and unavoidable edge cases?

For the evaluation itself, we proceed in three steps: To form an unbiased basis for the
evaluation, we start with a generic evaluation of each architecture, by listing observations
(properties of each architecture) related to each criterion. Next, we evaluate the relative
significance of the above criteria for the selected use case of an SAE L4 Highway Pilot. Finally,
we directly compare the architectures, considering the observed properties from the generic
evaluation and inferring merits or weaknesses with respect to each evaluation criterion, and
qualitatively ranking them under that criterion.

SOTIF

Support to accommodate
functional insufficiencies

Support to manage
operational conditions

Cybersecurity

Interactions between
subsystems

Interactions with
external systems

Simplicity

Number, complexity and
performance of subsystems

Required diversity

Complexity of validation

Scalability

Scalability towards
higher availability

Scalability towards
different offering levels

Availability

Availability of the system

Degradation scheme

Diagnostics scheme

Reliability

Availability of the nominal
functionality

13www.the-autonomous.com

KEY FINDINGS
Based on detailed evaluations, we find that the asymmetric architectures offer advantages
over symmetric ones; all of those architectures are based on the Doer/Checker/Fallback
pattern, albeit in different levels and realizations - Channel-wise DCF, Layer-wise DCF, DSM,
and AD-EYE have been studied in this report. By virtue of their inherent diversity of
computational streams, they exhibit more robustness with respect to availability, cybersecurity,
and SOTIF because the channels complement each other and tend to mutually compensate for
their potential weaknesses. The asymmetric architectures also offer more options with respect
to scalability, as omitting channels quite naturally leads to lower SAE level functionality, and
higher levels can be reached by adding channels. Superficially, they might appear more
complex than symmetric architectures. However, their diversity also facilitates modular
development and independent verification of the channels, which in turn is expected to lead to
lower development costs and enhanced availability.

Some symmetric architectures such as Cross-Checking Pair or Daruma can be implemented
with strongly diverse channels; in the case of Daruma this is even explicitly foreseen. If so, these
architectures can reap the benefits of diversity and asymmetry; they can be regarded as clever
(multiple) realizations of the Doer/Checker/Fallback pattern.

Other symmetric architectures (based on voting and agreement approaches) are seen as much
more susceptible to common cause deficiencies that might impact all channels at the same
time – be it from the functional safety, SOTIF, or even the cybersecurity perspective. If this
problem is addressed by heterogeneous channel implementations, e.g., diverse chipsets or
diverse algorithms, then voting becomes unwieldy since channels might come to different but
equally valid solutions; for minor discrepancies between channel outputs, tolerance ranges can
be allowed for (“inexact voting”). Still, fundamentally different but correct solutions (e.g., pass
an obstacle on the left vs. right) cannot be covered by voting with tolerance ranges and cannot
be distinguished from situations where a channel is faulty.

Finally, the monolithic Single-Channel architecture is not seen as a feasible solution: it does not
fulfill any of the criteria without additional internal redundancy and supervision mechanisms
that are introduced during implementation – which would make it evolve into one of the other
architectures.

IMPLEMENTATION CONSIDERATIONS AND
SUFFICIENT INDEPENDENCE
We consider selected topics related to the further refinement of the conceptual system
architecture into a hardware and software safety concept. This includes a discussion on
different software architectural styles – depending on the use case – as well as common safety
measures and cybersecurity aspects. For further refinement of the conceptual system
architecture into combined hardware/software solutions with redundant channels, we need to
consider dependent failures of the elements – because redundant elements, like proposed in all
architectures except the monolithic Single-Channel, must not fail simultaneously. In other words,
Sufficient Independence of the channels (which includes freedom from interference) and the
absence of single points of failure need to be ensured. We discuss coupling factors that can
lead to dependent failures and provide hints how to overcome them.

In practical implementations, there is a natural tension between the desire for mostly
homogeneous redundancy (by deploying the same kind of SoC, operating system, application
algorithms, etc. to reduce development cost) and the perceived need for fully heterogeneous

14 www.the-autonomous.com

redundancy (i.e., maximum diversity to avoid systematic common cause failures). To this end,
we propose a new methodology for evaluating Independence of an intended implementation
which avoids subjective and maybe wishful reasoning, and instead systematically assigns an
“independence coverage” to each dependent failure initiator. The methodology has been
derived in analogy to ISO 26262’s diagnostic coverage approach and gives a solid semi-
quantitative evaluation if Sufficient Independence is achieved.

ARCHITECTURE DESIGN AND STANDARDS
COMPLIANCE
To achieve a sound safety argumentation for the chosen architectures, we refer to the relevant
safety standards, in particular ISO 26262 and ISO 21448. In addition, we propose advanced
methods like formal verification on the architecture level and for the logical-to-physical
mapping, as well as Markov modeling to quantify the overall system availability, to meet an
ASIL target.

Furthermore, relevant standards for the implementation of an ADI have been analyzed, and the
relevance of architectural design to achieve standards compliance is described in this report:

• Implementation according to ISO 26262 (Functional Safety) will realistically require ASIL
decomposition to achieve the prescribed limits on failure rates, so as to be able to
integrate HW and SW modules that are not available or feasible in ASIL D quality. The
functional partitioning of the architectures described in this report provides a solid basis
for such a decomposition, i.e., for achieving ISO 26262 compliance of an ADI. Such
compliance is likely not achievable with a monolithic system approach.

• Although dedicated architecture design and evaluation steps are not explicitly prescribed
by ISO 21448 (SOTIF), the standard is structured around the sense-plan-act paradigm
and frequently refers to a fallback entity in case of faults, both implying an architectural
system partitioning that is provided by all except the monolithic approach. ISO 21448 also
acknowledges that a suitable modular architecture will reduce the effort for V&V.

• UNECE R157 defines functional and safety requirements for type approval of vehicles that
provide SAE L3 or higher HWP functionality and is applicable for many countries. It does
not prescribe a specific architecture, but clearly a well-designed architecture will support
fulfilment of the safety requirements of R157 by design and will enable to systematically
prove compliance, instead of seeking evidence of compliance via trial-and-error based
testing of a monolithic black-box system.

• ISO TR 5469 and its automotive specific variant ISO/PAS 8800 have both been published
in 2024 to address Functional Safety for AI-based systems. Besides extensively specifying
development measures for AI components to enhance system properties like reliability,
predictability, and robustness, both also propose architectural measures. The concrete
patterns suggested are a voting approach among diverse AI channels, a Doer/Checker
approach including limitation of the output, and a Doer/Fallback approach; while the
Doer is an AI-based component, the Checker is potentially AI-based, and the Fallback is
non-AI-based.

• The “UL Standard for Safety for Evaluation of Autonomous Products”, UL 4600 aims to
define a comprehensive safety case for autonomous vehicles both in urban and highway
use cases. It explicitly requests a logical and corresponding physical system architecture,
mandates redundancy and even a layered approach by requesting observability of
perception results – which effectively rules out monolithic (end-to-end AI) systems. Several
of the architectures discussed here provide a sound basis to achieve compliance with the
standard. Besides the direct architectural impact of UL 4600 there are many additional
clauses which can be supported indirectly by a suitable ADI architecture.

15www.the-autonomous.com

• ISO/TS 5083 is a very recent (2025) addition to the standards landscape; it gives
guidance on how to develop and validate an AD system for road vehicles and how to
structure the safety case. ISO/TS 5083 mandates fallback mechanisms to cope with faults,
but remains architecture-agnostic. Only in the context of AI models are architectural
patterns (of ISO/PAS 8800) referred to.

16 www.the-autonomous.com

INTRODUCTION AND
PURPOSE
THE AUTONOMOUS
The Autonomous is the global community shaping the future of safe autonomous mobility.
Initiated by TTTech Auto in 2019, The Autonomous is an open platform building an ecosystem
of all actors involved in the development of safe autonomous mobility. Ecosystem partners
range from car manufacturers, technology suppliers and regulatory authorities to disruptors,
thought leaders, academia, and government institutions. The goal of The Autonomous is to
generate new knowledge and technological solutions in the field of autonomous mobility, thus
accelerating the transition to market readiness and series development of safe self-driving
vehicles. To achieve this, The Autonomous has put in place two strategic streams:

1. Event Stream – facilitates discussions and networking for leading executives and experts
from the autonomous mobility ecosystem.

2. Innovation Stream – facilitates cooperation across the industry to work on global reference
solutions for safety challenges. These reference solutions conform to relevant standards
and will facilitate the adoption of safe autonomous mobility on a global scale. As part of
the Innovation Stream, The Autonomous launches and facilitates Working Groups and
Expert Circles in order to develop pre-competitive concepts, concrete technical solutions,
best practices, and recommendations in key areas of autonomous driving – from E/E
architectures and artificial intelligence to regulatory frameworks and societal acceptance.

The findings of The Autonomous Working Groups are presented yearly at The Autonomous
Main Event.

WORKING GROUP SAFETY & ARCHITECTURE AND
ITS SCOPE
The first initiated Working Group of the Innovation Stream of The Autonomous is the one on
“Safety and Architecture”: International research institutes and industry leaders come together
to address the fundamental question of what the conceptual system architecture of an
automated vehicle (SAE level 4 and higher) should look like, i.e., how the system’s partitioning
into computational streams, for instance for safety and redundancy purposes, could be
performed (for further explanations, see section 1.4). The present report produced by the
Working Group “Safety & Architecture” addresses this topic.

It is commonly understood and accepted that the development and implementation of a
failure-free automated driving system for complex driving tasks is an extremely tough
challenge. Even having been developed to the highest standards, complex HW and SW
elements can exhibit malfunctions that can materialize in an arbitrary way. Still, the overall
autonomous driving system needs to tolerate these and keep up operation at least for a defined
time frame – i.e., needs to be fail-operational or at least fail-degraded. Regarding faults, this
study very generally discusses how to achieve a dependable computational system
architecture and is thus not limited to faults like the ones caused by a lack of functional safety
or to functional insufficiencies due to a lack of “safety of the intended functionality”. A good
summary of dependability aspects that need to be considered can be found in [1].

17www.the-autonomous.com

The chosen level of conceptual representation is on the one hand sufficiently specific to be
useful as a reference and on the other hand sufficiently generic to allow for different
implementations. More details on this conceptual representation will be given in section 1.4.
This report focuses on the computational unit between the sensors and actuators which will be
called “Automated Driving Intelligence”2 (ADI), see Figure 1. This includes sensory processing,
fusion, trajectory finding and decision making, but excludes raw data sensors and the
actuators. Detailed hardware and software architectures are topics for potential follow-up
activities of the Working Group after this report.

Figure 1: Automated Driving Intelligence (ADI)

We would like to make it explicitly clear that this Working Group focusses solely on the architec-
ture aspect and does not cover the full lifecycle of an ADI. For instance, aspects like V&V or field
monitoring are only considered indirectly, insofar as we point out if a given architecture fosters
a modular and effective validation or rather impedes it. To this end, we also restrict ourselves
to the use case of an SAE Level 4 Highway Pilot (see section 1.1 for detailed considerations),
because it well reflects the typical complexity of an AD system and represents a reasonable
design target for OEMs in the near future. ADI architectures for other use cases like Urban Pilots
will pose similar challenges and adhere to similar design principles, even though the concrete
system implementation in terms of sensor set and algorithms will be different.

Act
Actuator
System

Sense
Sensor
System

Think
AD Intelligence

2 We use this term [50] instead of the more generic “AD System” to indicate that it excludes other systems such as raw data sensors or actuators.

18 www.the-autonomous.com

PURPOSE AND STRUCTURE OF THIS DOCUMENT

Architecture and design occur on multiple different abstraction levels (see Figure 2). It lies within
the responsibility of “system owners”, whom we consider the intended readers of this document,
to ensure a consistent design across all such levels. System owners (see also section 2.1.1) may
work for OEMs, mobility companies, or their suppliers and need to make architectural decisions
both on a high, abstract level and on a lower, implementation level (see also section 2.1.2).

Figure 2: Ensuring consistency between architectures on different abstraction levels.

This document is intended to support system owners in making high-level architectural
decisions and mapping these to low-level implementations. It aims to provide a structured
analysis of high-level architectures in the Automated Driving (AD) context, as well as
supportive arguments for demonstrating that crucial requirements are satisfied and important
KPIs are well met.

This document is structured as follows (see also Figure 3):

• In section 1 – Background and Premises, we define the context in which we look at high-
level system architectures.

▪ We start by outlining a reference AD feature that captures the challenges regarding
safety and availability. For this, we chose an assumed version of an SAE L4 Highway
Pilot feature (see section 1.1).

▪ The reference AD feature is assumed to be provided by an AD system. The system
boundary of this “AD Intelligence” is described in section 1.2.

▪ Based on these, we then derive high-level system requirements for the “AD
Intelligence”, with a focus on safety and availability (see section 1.3).

▪ The architectural abstraction level that we consider is described in detail in section 1.4.
▪ Finally, we also collect general constraints and design principles relevant to system

architectures within our chosen context and on our chosen abstraction level (see
section 1.5).

• In section 2 – Architecture Evaluation Criteria, we define evaluation criteria relevant to
high-level system architectures.

▪ In order to choose evaluation criteria relevant to our intended readers, we start by

Conceptual arch.

HW arch. SW arch.

19www.the-autonomous.com

describing the architectural choices they may need to make (see section 2.1).
▪ Many attributes of a well-made AD system do not directly depend on the high-level

architecture. We thus summarize these attributes and assume that they are covered
(see section 2.2).

▪ Attributes that are more closely linked to the choice of high-level system architecture
are collected in sections 2.3 to 2.8 and summarized in tabular form in section 2.9. Each
of these attributes is broken down into multiple evaluation criteria (and associated key
questions) that we later apply in the architecture evaluation.

• In section 3 – Candidate Architectures, we collect and describe different high-level system
architectures.

▪ We start by describing the process we used to collect candidate high-level system
architectures (see section 3.1). Many of these architectures will implicitly take the system
safety requirements, general constraints, and design principles into account.

▪ Since some of these share certain basic principles, we chose to extract these and
describe their intention and mechanism in a generic way (see section 3.2).

▪ The candidate conceptual system architectures are clustered in three major groups
and described in a comparable way in sections 3.3, 3.4, and 3.5.

• In section 4 – Architecture Evaluation, we evaluate the collected conceptual system
architecture candidates.

▪ Our evaluation methodology is described in section 4.1.
▪ We use the evaluation criteria defined earlier to make a series of general observations on

each candidate architecture (see section 4.2). These are not specific to an AD use case.
▪ This is then followed by considering these observations in the context of our reference

AD use case (see section 4.3).

• In section 5 – Implementation Considerations, we provide considerations for mapping con-
ceptual system architectures to specific HW and SW architectures.

▪ Considerations for mapping a conceptual system architecture to a physical HW
architecture are collected in section 5.1.

▪ Considerations for mapping a conceptual system architecture to a physical SW
architecture are collected in section 5.2.

▪ Standards relevant to the development of safe AD systems and their impact are
discussed in section 5.3. This section also outlines the process for constructing a safety
argumentation.

▪ Finally, considerations related to defining and evaluating sufficient independence are
collected in section 5.4.

Figure 3: Structure of this document.

System safety
requirements

20 www.the-autonomous.com

1 BACKGROUND AND
PREMISES
The requirements, general constraints, and design principles as introduced here relate to a
system of interest, referred to as the ADI (recall Figure 1), and more specifically, to the compu-
tational system architecture of the ADI. Ensuring the safety of automated driving requires a sys-
tem safety perspective that takes the AD intelligence, the vehicle platform, the behavior of sur-
rounding actors as well as the traffic environment into account, including the full set of
responsibilities previously assumed by the driver. The work described in this report does not
take on this entire grand challenge, but rather focuses on architectural aspects of the AD Intel-
ligence and their contributions to safety.

With the overall goal to propose and evaluate architectures for AD systems, a main emphasis
is placed on meeting appropriate functional safety requirements, with considerations of system
and software complexity, and hardware reliability (referring to ISO 26262 [2]). With the intro-
duction of advanced environmental perception and machine learning, additional safety ha-
zards must be addressed for automated driving, as traditionally, functional safety standards
have assumed that “requirements are known” and “nominal operation” with no software or
electronics failures, is safe. This has led to new standards, such as ISO 21448 “Safety of Intended
Functionality” (SOTIF) [3], which attempts to address these challenges. SOTIF is part of the con-
siderations for this work regarding causes of failures and qualitative aspects of diversity (further
elaborated in section 1.5.1).

For highly Automated Vehicles (AVs), the increasing complexity and risks of failures lead to
open issues, including what constitutes safe road behavior and what measures are needed to
assure a “positive risk balance” [4] such that an AV would at least perform better than an ave-
rage driver. These are topics being treated in recent standardization work, such as ISO TS
5083—Safety of Automated Driving Systems. A positive risk balance is considered for the archi-
tectural work in terms of, for example, reliability goals. Behavioral aspects such as tactical safe-
ty [5] are beyond the scope of this work.

Cybersecurity will also be key for automated vehicles and their relation to safety, as manifested
by standards like ISO/SAE 21434:2021 [6] for automotive. Cybersecurity aspects are, however,
not covered extensively in this release, partly due to the chosen abstraction level. Some aspects
of cybersecurity that have an indirect impact on security considerations will be covered through
a few evaluation criteria, see section 2.5.

1.1 REFERENCE AD USE CASE
1.1.1 MOTIVATION
This section outlines the reference AD use case targeted by the "Safety & Architecture" Working
Group of The Autonomous. This may later be supplemented by additional AD use cases in fu-
ture iterations of the Working Group.

This reference AD use case shall serve the following purposes:

• As an input for defining reasonable assumed requirements (see section 1.3). In ISO 26262,
safety-related requirements are ultimately derived from item-specific safety goals, e.g.,
that the system shall avoid collisions and loss of vehicle control.

• As an input for establishing what level of algorithmic complexity is required to perceive
varied environments and handle different and dynamic traffic scenarios.

21www.the-autonomous.com

• As an input for defining general assumptions (see section 1.5).

• As an input for defining and quantifying dependability goals3.

This reference AD use case may help with the following purposes:

• To derive a rough estimate of what computational resources are required.

• To derive a rough estimate of currently achievable failure rates for the computational re-
sources as well as the estimated rate of hazardous behavior of the intended functionality
[10]4 from software (application and infrastructure code).

• To refine requirements that are related to vehicle-level use cases and scenarios into more
detailed requirements on the algorithm level, e.g., perception, activation / deactivation,
degradation, or warnings5.

Note: This reference AD use case is intended to give the reader a general understanding of
what such a feature could look like. While some of these descriptions have direct relevance for
architectural considerations later on (marked in bold font in the following reference AD use
case sub-sections), many others merely serve as a background to outline the many different
aspects and perspectives involved.

1.1.2 CHOICE OF REFERENCE AD USE CASE
OEMs are working on a number of different AD use cases, each having different architectural
implications. We have screened these on a high level according to several criteria to identify a
suitable reference AD use case:

• Timeline
The reference AD use case should (likely) become technically and commercially feasible
in the near future.

• Complexity of the Operational Design Domain (ODD)
The reference AD use case should apply to an ODD of at least medium complexity. This
implies that complex algorithms and high-performance hardware are necessary.

• System availability
The reference AD use case should have high integrity and availability requirements, i.e.,
require resilience against faults (fail-operational/fail-degraded) to render the vehicle at
least as safe as if it was controlled by a careful, competent human driver. This implies that
a non-trivial conceptual system architecture is necessary to compensate for the weaknes-
ses of complex algorithms and powerful hardware.

5 This may also include performance-related aspects such as timing, accuracy, and detection reliability.

4 Malfunctioning behavior can arise due to faults (e.g., bugs), due to functional insufficiencies (e.g., environmental aspects neglected in the
specifications), due to operational disturbances (e.g., environmental conditions), or due to misuse. In systems involving machine learning, this may
also be caused by bad or biased training data. There are some empirical estimates for the number of undiscovered bugs per line of code remaining
despite using proper development processes.

3 Dependability goals are a complex topic and can cover a wide variety of aspects. Some of these, e.g., continued operation after an MRC has
been reached, go beyond the scope of this report. In this context, remote assistance can be beneficial for some AD use cases.

22 www.the-autonomous.com

Table 1: List of AD use cases under discussion (not comprehensive).

The AD use case we consider the most suitable (see Table 1) is an
SAE Level 4 Highway Pilot (HWP) feature.

We explicitly target the “High Automation” level / “SAE L4” (accor-
ding to the classification scheme proposed by the Society of Auto-
motive Engineers [7]6) over SAE L3 (see also [8, 9]). This entails the
following:

• The system assumes full responsibility for the Dynamic Driving Task (DDT) in all dimensi-
ons, i.e., the driver can be “hands-off”.

• The system assumes full responsibility for its own supervision, i.e., the driver can be “eyes-
off” and “brains-off”.

• System safety will never depend on the driver to take back control, which would be both
difficult to achieve [9] and would also have a pronounced detrimental effect on the “qua-
lity time” gained from an AD feature.

• The system may only request that the driver take back control within more than a few do-
zen seconds to allow a smooth transition to user-operated mode. If the driver does not
take back control when asked to, the system needs to bring the vehicle to a minimal risk
condition on its own.

If the AD system encounters a fault and/or if the driver does not respond to a request to interve-
ne (exact time frame subject to concrete system specifications), the vehicle will perform a DDT
fallback operation. We assume that this consists of the execution of a Minimal Risk Maneuver
(MRM) [7] to enter a Minimal Risk Condition (MRC), e.g., pulling over to the right side / emer-
gency lane and coming to a controlled stop or (if this is no longer feasible) coming to a control-
led stop in the current lane, but excludes recovery, i.e., the AD system does not attempt to con-
tinue driving without a full reset after entering the MRC.

1.1.3 FUNCTIONALITY PROVIDED TO USER
In the following, we define an assumed version of an HWP feature, similar to proposals from
different OEMs. These allow the driver of a passenger car (sedan, SUV, crossover, or similar
vehicle with relatively simple vehicle dynamics) to take their eyes off the road and perform other
tasks while on a highway, with the AD system performing the entire DDT (lateral and longitudi-
nal vehicle motion control and complete Object and Event Detection and Reaction (OEDR))
and assuming full responsibility.

6 These classification schemes are still evolving, which is why we consider a more detailed outline of the AD use case (including feature activation
and deactivation) necessary.

AD use case Timeline ODD complexity System availability

Traffic Jam Pilot In series production Low Medium

Highway Pilot High Medium High

Mobility as a Service (MaaS) Medium High Medium

Valet Parking High Very low Low

Low-speed AD (shuttle) High Low Low

SAE Level 4 130
km/h

23www.the-autonomous.com

The Operational Design Domain (ODD) of the HWP feature is outlined in more detail in appen-
dix ODD outline of reference AD use case.

1.1.4 FEATURE ACTIVATION, DEACTIVATION, AND REQUESTS TO INTERVENE

ID Statement

U1 The HWP feature supports lane keeping.

U2 The HWP feature supports lane changes.

U3 The HWP feature supports traffic jams (stop & go traffic and enforcement of an
emergency corridor).

U4 The HWP feature can be set to continue driving on the current highway.

U5 The HWP feature can be set to go to a target highway exit.

U6 The HWP feature supports speeds of up to 130 km/h.

U7 The HWP feature visually presents its status (e.g., off / on / defective) as well as its
world model and motion plan to the passengers.

ID Statement

U8

We assume that “regular activation” of the HWP feature could proceed as follows:

• The driver presses the "activate HWP" button.

• The system checks that all conditions for its activation are fulfilled (see appen-
dix ODD outline of reference AD use case) and indicates the result to the driver.

• The system gradually offers more resistance to steering wheel and pedals.

U9

We assume that “regular system-initiated deactivation” of the HWP feature could
proceed as follows:

• The system visually represents the automated driving system’s world model,
motion plan and diagnostics to the user to simplify the (requested) control
takeover for the user.

• The system indicates that it is approaching a point where the conditions for
activation will no longer be fulfilled (end of the mission, change of external
circumstances, detected failure, etc.).

• The driver presses the "acknowledge deactivation" button.

• The system checks that the driver is capable of driving (attentive and hands
on the steering wheel) and indicates the result to the driver.

• The system gradually offers less resistance to steering wheel and pedals.

• If the driver fails to resume control, the system executes an MRM when the
conditions for activation are no longer fulfilled.

U10 We assume that “regular driver-initiated deactivation” of the HWP feature could pro-
ceed similarly to “regular system-initiated deactivation”, but without the first two steps.

U11

We assume that “fast driver-initiated deactivation” of the HWP feature could pro-
ceed as follows:

• The driver puts their hands on the steering wheel and/or feet on the pedals.

• The driver overrides the resistance offered by the system.

• The system indicates to the driver that it has relinquished control.

24 www.the-autonomous.com

1.1.5 DEGRADED FUNCTIONALITY

ID Statement

U12

We assume that “driver-initiated emergency deactivation” of the HWP could pro-
ceed as follows:

• The driver presses the "pull over" button.

• The system indicates to the driver that it will come to a controlled stop.

• The system executes an MRM.

ID Statement

U13 The HWP feature has a nominal mode (routine/normal operation), during which
it is capable of executing the mission.

U14 The HWP feature has a degraded mode (see also Figure 4), during which it will
execute an MRM (pulling over, controlled stop, or emergency stop) [7].

U15 The HWP feature will enter degraded mode if any part of the AD system encoun-
ters errors seen as critical to the ADI functionality or if the ODD is violated.

U16 After entering degraded mode (unable to continue mission), the HWP feature will
not activate again without a full reboot.

U17
In degraded mode, the HWP feature will signal the emergency (e.g., via hazard
lights) and try to come to a controlled stop in (what is understood as) a safe
enough location (i.e., emergency lane or right-most lane). [First choice]7

U18 If this is not possible, the HWP feature will try to come to a controlled stop in the
current lane of travel. [Second choice]

U19 If this is not possible, the HWP feature will try to come to an emergency stop. [Third choice]

U20
The HWP feature does not have a limp-home mode, during which it is capable of
continuing the mission with reduced functionality (e.g., reduced speed) and/or
trying to restore full functionality (e.g., partial reboot while continuing to drive).

7 The HWP feature should be at least as safe as a competent human driver, i.e., it should aim for the first choice and only resort to the second or
third choices if the circumstances require it.

25www.the-autonomous.com

Figure 4: State diagram of different operating modes. While a minimal risk maneuver (MRM) only brings the vehicle to a stop, additional measures
such as activating warning lights, etc.[75]8 are necessary to reach a minimal risk condition (MRC).

1.2 SYSTEM BOUNDARY
1.2.1 OVERVIEW
The Working Group “Safety & Architecture” primarily considers a system providing AD functiona-
lity, i.e., the Automated Driving Intelligence introduced previously (recall Figure 1). In this secti-
on, we lay out the boundary of this AD Intelligence and its interactions with other systems outsi-
de this system boundary. Due to our focus on system conceptual architectures (as opposed to
detailed SW or HW architectures), we only describe the data and control flow on interfaces and
omit HW-related aspects such as concrete network topologies, power supply or cooling. Figure
4 shows such a layout, providing a simplified representation including the elements that “close
the loops”, i.e., the physical vehicle and the human making use of the User Interface (UI) system.

Figure 5: AD Intelligence and its interfaces to surrounding systems.

MRC
(stand-still, warning

lights, etc.)

Degraded mode
(MRM only)

8 UNECE R157 [75] distinguishes between procedures and maneuvers, e.g., in the context of lane changes. While maneuvers cover only the physical
movement, procedures also cover accompanying actions such as indicating the physical movement to other traffic participants.

26 www.the-autonomous.com

The AD Intelligence is connected to four other systems (see Figure 5), which are described in
more detail in the following subsections. The main data flow is from the Sensor System to the AD
Intelligence and then from the AD Intelligence to the Actuator System (receivers). The AD Intel-
ligence’s main service interface is to the Actuator System. The other service interfaces of the AD
Intelligence are mainly for sensor control and diagnostics.

1.2.2 SENSOR SYSTEM
The Sensor System provides the main inputs to the AD Intelligence. It consists of a set of sensors
and/or related ECUs (e.g., zonal controllers).

• The Sensor System provides measurement data from a sensor set (SensorData). This inter-
face must be capable of real-time behavior and must be fail-operational (e.g., redundant
with absence of dependent failures, encompassing common cause and cascading failures).

• The Sensor System also provides diagnostic information to the Diagnostics System (Diagno-
sticsData).

• The Sensor System receives calibration and control data (SensorControl).

• The sensor set must be sufficient9 for the AD Intelligence to create a detailed environment
model10 and offer its service (nominal and degraded functionality). The sensor set comprises
“outward-looking” sensors (e.g., radar, camera, lidar, or ultrasonics), “inward-looking” sen-
sors (e.g., IMU), and digital information (e.g., V2X or HD Maps).

1.2.3 ACTUATOR SYSTEM (RECEIVERS)
The Actuator System is the consumer of the service provided by the AD Intelligence. It consists
of a set of “receivers”, which may be actuator control ECUs and/or smart actuators.

• The Actuator System receives a set of waypoints (ActuatorData), which describe the
desired movement of the vehicle11. This interface must be capable of real-time behavior
and must be fail-operational. The Actuator System itself must be capable of fail-operatio-
nal or fail-degraded operation.

• The Actuator System also provides diagnostic information to the Diagnostics System (Dia-
gnosticsData).

• The actuator set must be sufficient to control the vehicle even in the presence of a single
fault.

1.2.4 USER INTERFACE (UI) SYSTEM
The UI System allows the user to control the AD Intelligence. Some parts of the UI are safety-
critical, e.g., to prevent unintended activation / deactivation or driver monitoring.

• The UI System provides commands such as activation / deactivation requests, accelerati-
on, steering and brake requests, destination input, or pull-over request (UserInput).

• The UI System receives requests and status information such as take-over request, or environ-
ment model for the Heads-Up Display (HUD) and presents those to the user (UserInformation).

• The UI System also provides diagnostic information to the Diagnostics System (Diagno-
sticsData).

10 The ADI can process raw sensor data using perception and/or sensor fusion components.

9 “Sufficient” covers multiple aspects, which go beyond the scope of the “Safety & Architecture” Working Group. Among these are that the sensor set
needs to have a sufficient coverage area (detection range) for the intended functionality, needs to be able to detect all relevant objects (e.g., via
employing different sensor types), and needs to be robust to faulty sensors (e.g., via redundancy).

11 On the implementation level, which goes beyond the scope of this report, there are many ways to represent this intended movement, e.g.,
waypoints, curvature and velocity, or torque and acceleration values. The actuator control ECUs then process these in a high-frequency control
loop into the corresponding actuator setpoints, e.g., the current driving the electric motor in the steering column.

27www.the-autonomous.com

1.2.5 DIAGNOSTICS SYSTEM
The Diagnostics System collects status information from all systems in the vehicle and may also
contain data recording functionality (logging and/or black box). In contrast to traditional auto-
motive diagnostics, the Diagnostics System we refer to here is focused on the AD operation and
should be seen as an abstraction of existing and required (new) features. At least part of this
system needs to be on board the vehicle.

• The Diagnostics System provides status information such as detected malfunctions in other
systems (SystemStatus).

• The Diagnostics System receives status information from all other systems (DiagnosticsData).

1.3 SYSTEM SAFETY REQUIREMENTS

While section 1.1 describes the functionality offered by the AD Intelligence from a user perspec-
tive, we define assumed high-level safety requirements regarding the services offered by the
system from a technical perspective in this section.

S1: AD Intelligence output timeliness

S2: AD Intelligence output availability

S3: AD Intelligence output correctness

ID Statement Notes

S3

The AD Intelligence shall not provide
erroneous outputs to the Actuator Sys-
tem (receivers), implying that appropri-
ate error detection, error handling or
masking of uncritical faults should be
introduced to reduce the likelihood of
propagating failures (stemming from
errors within the AD Intelligence).

Allowing an erroneous output to reach
the actuators would lead to potential
harm to the passengers or other traffic
participants, e.g., due to a collision.

ID Statement Notes

S2

The AD Intelligence shall provide out-
puts to the Actuator System (receivers)
in a fail-operational way to each recei-
ver.

“In a fail-operational way” means that the
AD Intelligence continues to perform its
nominal function or a degraded function
in the presence of any one single fault.

ID Statement Notes

S1
The AD Intelligence shall provide out-
puts to the Actuator System (receivers)
in a timely manner.

“Timely manner” is here used to refer to
fast enough (for the dynamics at hand)
and predictably (e.g., with sufficiently
low jitter, and in every cycle)

28 www.the-autonomous.com

S4: AD Intelligence output consistency

S5: Detection of perception-related faults and output insufficiencies

S6: AD Intelligence diagnostics

1.4 ABSTRACTION LEVEL

The discussion of system architecture can occur on several abstraction levels, which may be
suited better or worse to the consideration of certain issues. In the following, we outline the
levels relevant to the Safety & Architecture Working Group.

On a high abstraction level, we talk about “conceptual architectures”. Here, the system is
composed of a small set of well-encapsulated subsystems that fail independently (so-called
“Fault Containment Units” or with an additional absence of common cause failures). Each sub-
system can comprise parts of a processing channel or even an entire processing channel (sen-
sors to actuators). A point of particular interest on this abstraction level is how to achieve and
manage sufficiently independent redundancy within the system.

On a low abstraction level, we talk about HW and SW architectures. Here, the system is com-
posed of a potentially large set of HW and SW components, which may be highly particular to
the specific implementation and system vendor.

ID Statement Notes

S5

The AD Intelligence shall implement
strategies to detect and react to per-
ception malfunction and performance
limitations due to environmental condi-
tions or other causes related to the Sen-
sor System.

This is not expected to be a differentiating
factor between different conceptual ar-
chitecture candidates. Sensor deficiencies
as well as functional aspects related to
perception, localization, prediction, ODD
detection and planning are outside the
scope of this study.
Still, support for SOTIF by architectural
measures is described in section 2.8 and
in the candidate architectures’ evaluation.

ID Statement Notes

S6 The AD Intelligence shall report its sta-
tus to the Diagnostics System.

This is not expected to be a differentiating
factor between different conceptual archi-
tecture candidates.

ID Statement Notes

S4

The AD Intelligence shall enable the
Actuator System (receivers) to ensure
the consistency of executed actuator
setpoints.

This applies to consistency between the
setpoints executed by different and redun-
dant actuators (like steering and braking),
in particular for the case where multiple
communication channels are used, possi-
bly connecting to multiple receivers.

29www.the-autonomous.com

The Safety & Architecture Working Group focuses on the discussion of conceptual architectures
for two main reasons:

• Conceptual architectures are sufficiently non-trivial, i.e., a reference solution and industry-
wide cooperation can provide benefits to system owners. Identifying the underlying prin-
ciples for achieving high integrity and high availability and combining them in a transpa-
rent way leads to a better understanding.

• Conceptual architectures are sufficiently generic, i.e., a reference solution can be appli-
cable to most system owners. Taking vendor-specific constraints, e.g., commercial consi-
derations or integration with legacy systems, into account is shifted to the specific HW and
SW implementation.

Specific HW or SW architectures are not considered. Not only would implementation-specific
considerations constrain applicability and distract from the underlying principles of the con-
ceptual system architectures, but they are also likely to quickly become obsolete. However, we
will identify considerations that apply when mapping a conceptual architecture to HW and SW
in order to ensure the desired system properties.

1.5 GENERAL CONSTRAINTS AND DESIGN PRINCIPLES

When coming up with conceptual system architectures intended to satisfy the system safety re-
quirements in section 1.3, several aspects should be considered:

• There are certain basic technological limitations which constrain how very high reliability
systems can be designed, built using realistic HW and SW components, and tested. Such
general constraints are summarized in section 1.5.1.

• In addition, there is a set of empirical best practices that should be respected in a sound
conceptual system architecture. Such design principles are summarized in section 1.5.2.

1.5.1 GENERAL CONSTRAINTS

G1: Design faults in large and complex monolithic systems

Rationale

• A SW system with more than ~10k lines of code will statistically contain at least one SW fault
despite adequate testing [10] [11]. This does not mean that a SW system with fewer lines of
code will necessarily be free from faults with adequate testing (e.g., control flows can still
be complex). Heisenbug12 type faults [12], which may appear to “alter” its behavior when
attempting to investigate or reproduce it, can prove particularly hard to detect and elimi-
nate. A typical example of a Heisenbug fault is a race condition in concurrent software.

• The ADI can be assumed to contain several subsystems that each contain more than a mil-
lion lines of source code.

12 See also https://en.wikipedia.org/wiki/Heisenbug

ID Statement Notes

G1
We assume that it is impossible to find
all design faults in a large and complex
monolithic SW system.

Including sample omissions and biases in
machine learning training.

30 www.the-autonomous.com

G2: Single-event upsets in non-redundant HW

Rationale

• SEUs are caused by ionizing particles, e.g., cosmic radiation, which affects electronic de-
vices such as processors or memory. The impact of this depends on the executed SW, but
in the worst case, e.g., for brittle neural networks, even a single bitflip can lead to
misclassification [13].

G3: Need for safety by design

Rationale

• Depending on the testing assumptions, it would take hundreds of millions to hundreds of
billions of miles driven to demonstrate the reliability of autonomous vehicles [14] [15]. Addi-
tional methods like simulations can only alleviate this to some extent.

G4: Specification of critical scenarios

Rationale

• The challenge relates to the “open” environments of many ODDs and moreover to the fact
that traffic behavior will change as AVs are introduced [16].

• The field of automated driving is relatively new compared to the aerospace industry. Even
in the comparably “simple” environment of the sky, it took several decades of collecting
and studying rare and exceptional situations to establish similarly high dependability.

• Examples for such edge cases are rare traffic participants (costumed pedestrian, vehicle
with odd shape, vehicle with sky blue paint or mirror finish, etc.), rare events (complex
traffic accident, confusing lost load on road, etc.), or rare environmental conditions (moon
in ash cloud, etc.).

ID Statement Notes

G3

We assume that it is impossible to esta-
blish the very high safety-related
availability of a large monolithic sys-
tem by testing and simulation alone.

The order of magnitude considered here is
similar to the rate of random HW faults for
ASIL D.

ID Statement Notes

G4

We assume that it is impossible to preci-
sely specify all critical scenarios that
can be encountered within the ODD
specified for automated driving.

The corresponding risks can be reduced
by guidance from relevant standards such
as SOTIF and UL 4600, including through
ODD and field monitoring.

ID Statement Notes

G2
We assume that it is impossible to miti-
gate single-event upsets (SEUs) in non-
redundant HW.

While the architectural evaluation in this
report will not go to a detailed hardware
level, the implication is that errors due to
SEUs must be considered in the system-le-
vel architecture design.

31www.the-autonomous.com

G5: Frequent switching

Rationale

• Under certain conditions, switching back and forth between the trajectories / sets of set-
points of two subsystems may lead to unsafe behavior, e.g., when "mixing" evasive action
to the left and the right and thus never moving far from the center.

G6: Checks to determine plausibility of a subsystem’s output

Rationale

• There are many ways of designing safety mechanisms that cover the essential safety goals
of the AD Intelligence. Instead of the trajectory, checking may also apply at the level of a
set of setpoints for the Actuator System.

▪ Proposed trajectories can be checked against another environment model (than the
one that was used to generate it), i.e., whether certain safety goals are violated.

▪ Proposed sets of setpoints can be checked against another environment model and
against the corresponding proposed trajectory, i.e., whether the two are consistent.

▪ A runtime environment model can be checked for violations of assumptions or of the ODD.

G7: Rate of safety incidents

ID Statement Notes

G6

We assume that it is possible to evalua-
te the plausibility of a proposed trajec-
tory, based on an independent envi-
ronment model.

No subsystem will have access to ground
truth but is in principle able to assess the
perceived correctness of the trajectory
provided by another subsystem. Com-
ment: Special focus must be put on elimi-
nating dependent failures.
With perceived correctness of the trajec-
tory, we refer to satisfying certain safety
requirements (trajectory verification).

ID Statement Notes

G5
We assume that it is unsafe to frequent-
ly switch back and forth between diffe-
rent trajectories.

It is known from basic control theory that
“bumpless transfer” requires some form of
interaction between controllers involved in
switching. Trajectories generated by diffe-
rent subsystems might not implement the
same driving strategies, e.g., with respect
to passing obstacles vs. braking.

ID Statement Notes

G7

We assume that the target rate of hazar-
dous behavior for the AD Intelligence
functionality includes the effects of ran-
dom faults, as well as the potential for ha-
zardous outcomes arising from systematic
faults and functional insufficiencies.

This assumption is included to be able to
reason about architectural candidates, re-
flecting a failure rate that does not take
into account the causes of malfunctions.

32 www.the-autonomous.com

Rationale

• While the failure rate targets in ISO 26262 only apply to random HW faults, the dependa-
bility goals for the AD Intelligence apply jointly to hazards arising from random and syste-
matic HW faults, systematic SW faults, and insufficient specifications or performance limi-
tations (SOTIF).

G8: Impact of system failure

Rationale

• This applies only to situations where the AD Intelligence as a whole fails. The failure of sin-
gle subsystems can be compensated for by the conceptual architecture.

• While active, the AD Intelligence replaces the human driver. However, according to traffic
statistics [14] [17], only a small fraction of reported accidents (human-driven cars) involves
fatalities (0.1-0.2%) or severe injuries. In addition, a significant fraction of minor accidents
is not even reported to authorities (25-60%) [14] [18]. Most wrong decisions made by hu-
man drivers thus do not have severe consequences. We cannot make the outright assump-
tion that the severity distribution in accidents caused by human drivers is in any way simi-
lar to those caused by an AD Intelligence; however, it is clear that not all failures of the AD
intelligence will lead to fatal accidents.

• The assumption is related (complementary) to the “improvement factor” demanded of an
AD Intelligence over the average human driver.

G9: Interference from other systems

Rationale

• Inputs from other safety-related systems, e.g., Automated Emergency Braking (AEB) or si-
milar, can be overridden on the Actuator System side while the AD Intelligence is in opera-
tion.

ID Statement Notes

G9
We assume that other safety-related
systems do not interfere negatively with
the AD Intelligence.

Alternatively phrased, we assume an ar-
chitecture which coordinates the safety-
related behavior of the vehicle.

ID Statement Notes

G8

We conservatively assume that all failu-
res lead to hazardous behavior of the
AD Intelligence, leading to accidents in
the worst case.

This is a pessimistic assumption, but con-
servativeness was deliberately chosen to
be on the safe side. While some failures,
e.g., a collision trajectory, will be highly
hazardous, other errors may not impact
risk to a large extent (e.g., a slightly alte-
red trajectory).

33www.the-autonomous.com

1.5.2 DESIGN PRINCIPLES

D1: Fault Containment Units

Rationale

• In literature, variations of the definition of “Fault Containment Unit” (FCU) can be found. In
the context of this report a Fault-containment unit is a subsystem with its own hardware
and software, whose faults are prevented from propagating to its receivers.
Note 1: Fault propagation is prevented by means of FCU-internal and/or external safety
mechanisms, which are designed to ensure absence of cascading failures.
Note 2: Faults with a potentially changed semantic (by an internal safety mechanism) pro-
pagate via FCU interfaces. Therefore, each interface of an FCU should be defined so that
the system can react to such faults (i.e., the failure modes of the interfaces should be
made known to its receivers).

• On system level it will be a responsibility of the receivers to manage the failure modes of
an FCU in a safe way.

• For system-level conceptual architectures, we assume that each FCU fails independently
of other FCUs. This requires an absence of common cause failures that needs to be assu-
red by engineering measures.

• An arbitrary failure (including Byzantine failures) of an FCU must not lead to a failure of
the complete ADI; ensuring this property is a key requirement for the system-level concep-
tual architectures.

• See G1: Design faults in large and complex monolithic systems, G2: Single-event upsets in
non-redundant HW, and G3: Need for safety by design.

• To reduce the complexity of a large system, one of the simplest and most robust techni-
ques is to allocate separable functions to subsystems that can be shown to be as indepen-
dent from each other as possible [10]. Such subsystems should form FCUs, which can be
verified separately.

D2: Simple and complex subsystems

ID Statement Notes

D2

The conceptual architecture of the AD
Intelligence shall distinguish between
simple subsystems (fully verifiable – pre-
ferably with formal techniques – and
deterministic, e.g., due to being formal-
ly specified, having few lines of code,
and avoiding algorithmic complexity)
and complex subsystems.

ID Statement Notes

D1

The AD Intelligence shall consist of a set
of independent subsystems that each
form a Fault Containment Unit (FCU).
Additionally, the set must be free of
common cause failures.

Special emphasis needs to be placed on
avoiding dependent failures, i.e., common
cause failures and cascading failures. The
appropriate strategies for achieving this
depend on the complexity of the subsys-
tem.

34 www.the-autonomous.com

Rationale

• See G1: Design faults in large and complex monolithic systems, G3: Need for safety by de-
sign, and G4: Specification of critical scenarios.

• Simple subsystems should be developed fully to ASIL D, be fully formally specified (to pre-
clude Byzantine faults13 during runtime), and contain a relatively small number of lines of
code (i.e., thousands, not millions).

D3: Diversity and redundancy for complex subsystems

Rationale

• See G1: Design faults in large and complex monolithic systems, G3: Need for safety by de-
sign, G4: Specification of critical scenarios, D1: Fault Containment Units, and D2: Simple
and complex subsystems.

• Complex subsystems must be assumed to exhibit Byzantine faults, i.e., inconsistent or arbi-
trary behavior when faulty. Due to their size and complexity, design faults and HW failures
become inevitable and must be addressed by employing redundancy and design diversity.

D4: Provable correctness for simple subsystems

Rationale

• See G1: Design faults in large and complex monolithic systems, D1: Fault Containment
Units, D2: Simple and complex subsystems.

• It is difficult to achieve replica determinism, i.e., identical behavior from two instances of
the same implementation, for complex subsystems. However, this can be achievable for
relatively simple decision logic, using simple, fully verifiable SW running on fault-tolerant
HW.

• As stated in G1: Design faults in large and complex monolithic systems, SW faults should
statistically be expected for a SW system with more than ~10k lines of code [10] [11].

ID Statement Notes

D4

The simple subsystems of the AD Intelli-
gence shall be sufficiently simple such
that they are fully verifiable (formally
specified, few lines of code).

It is assumed that the simple subsystems
will be concerned with arbitration invol-
ving logic.

ID Statement Notes

D3

The complex subsystems of the AD Intel-
ligence shall be diverse in design whe-
re reasonable. For any shared ele-
ments, safety-related availability
requirements shall be considered du-
ring development.

Groups of redundant subsystems may have
similar or identical purposes. Different de-
signs are easier to achieve in the former
case, but necessary in both.

13 See https://en.wikipedia.org/wiki/Byzantine_fault

35www.the-autonomous.com

D5: Avoidance of emergent behavior

Rationale

• See G3: Need for safety by design and G4: Specification of critical scenarios.

• As establishing the very high dependability of a monolithic system is not feasible, it is ne-
cessary to provide evidence of each constituent subsystem’s dependability separately.
Such an effort is vastly facilitated if these subsystems are coherent and avoid emergent be-
havior when interacting with other subsystems.

D6: Transient and permanent faults

Rationale

• See G6: Checks to determine plausibility of a subsystem.

• When transient faults occur too often, it is reasonable to consider this a permanent fault
and to react appropriately (e.g., request driver to take over and/or execute an MRM).

D7: Mitigation of common cause hazards

Rationale

• The various hazards that can lead to ADS losses are a function of the ODD and use case.
Functional insufficiency is a major (if not majority) contributor to hazardous ADS behavior [21].
There is an opportunity to address them at the design level too, not just within V&V efforts.

• Each channel of the architecture pattern can be characterized by capabilities. As introdu-
ced in the SaFAD whitepaper [4], these capabilities can be understood as being the fun-

ID Statement Notes

D7

The conceptual architecture shall mini-
mize the possible propagation paths of
hazards by mitigating against common
cause faults and functional insufficien-
cies across the design pattern [19] [20].

Adaptation of the Swiss-cheese model in
Figure 6 and Figure 7 is proposed to guide
awareness regarding propagation of ha-
zards through system channels. It further-
more supports the abstract design goal
formulation of minimizing overlap of the
holes.
An example is provided in appendix Clas-
sification of Trajectory Capability.

ID Statement Notes

D5
The conceptual architecture shall mini-
mize interactions among the different
subsystems.

ID Statement Notes

D6

If the AD Intelligence detects a large
number of transient faults within one of
its subsystems, it shall consider this a
permanent fault in this subsystem.

36 www.the-autonomous.com

damental set of system properties that are responsible for safety (nominal/degraded func-
tionality – implemented via elements). The channel’s functional complexity is indicated by
the depth of the slice, and the operational domain coverage (i.e., ODD, Operational Do-
main, or Target Operational Domain) is indicated by its area.

• An output insufficiency is a lack of the capability that is intended to be provided by the
ADI. A shared output insufficiency between channels allows triggering conditions to mani-
fest as losses (i.e., an undesired event such as property damage, injury, or death) and is
analogous to the (un-)known unsafe area in SOTIF [21]. Likewise, shared errors between
channels allow fault root causes to manifest as losses.

▪ Therefore, the conceptual design goal of minimizing the shared lack of capability
across channels can be formulated. The conceptual dimensioning and positioning of
errors and output insufficiency across channels must be well understood for mitigation
efforts (such as diverse, heterogeneous implementations) to offer complementary
capability.

▪ As indicated by the model, it cannot be assumed that efforts to achieve diversity with
respect to fault tolerance will also satisfy the diversity required to mitigate output
insufficiencies. There must be an awareness that fault-tolerant implementations alone
do not exclude the possibility of functional insufficiencies leading to losses.

Figure 6: Conceptual architecture-level hazard propagation, as expressed via an adaptation of the Swiss-cheese model

37www.the-autonomous.com

Figure 7: Bird's-eye view – Reduction of hole overlaps (errors, output insufficiency) as a design goal for channel design

38 www.the-autonomous.com

2 ARCHITECTURE
EVALUATION CRITERIA
2.1 ARCHITECTURAL DECISIONS AND PROCESSES

The term “architecture” can cover both commercial aspects, e.g., as business architectures,
and technical aspects. In the latter, it can cover different abstraction levels, e.g., functional
architectures, conceptual (or logical) architectures, down to very specific technical (or physi-
cal) HW and SW architectures.

As stated in section 1.4, the focus of the Safety & Architecture Working Group lies on the concep-
tual abstraction level. To make sound architectural decisions here, we first need to define a set
of evaluation criteria suitable for this abstraction level. These should not exist in isolation, i.e.,
they should relate to relevant decisions the target reader of this document needs to make. To
ensure this relevance, we first outline a persona for the assumed reader, i.e., someone respon-
sible for making architectural decisions as part of a systems design process.

2.1.1 SYSTEM OWNER PERSONA
It lies within the responsibility of “system owners” (often system architects), whom we consider
the intended readers of this document, to ensure a consistent systems design across all abstrac-
tion levels (recall Figure 2). In the following, we outline the system owner persona.

The system owner can work for an OEM, a mobility company, or for a system supplier:

• Large and/or technologically leading OEMs may try to bring most of the architectural de-
sign in-house. In this case, the system owner needs to make all architectural decisions,
perform mapping between abstraction levels, and ensure consistency.

• Small and/or technologically following OEMs, as well as mobility companies, may try to
buy off-the-shelf system solutions. In this case, many architectural decisions are made by
the system supplier, but the system owner still needs to understand the different architec-
ture perspectives in order to pick a suitable system solution.

• System suppliers are often focused on providing off-the-shelf HW platforms but may also
extend to SW platforms and application SW solutions. In this case, the system owner may
need to demonstrate to prospective customers that the offered solutions can be combined
into a suitable AD system.

2.1.2 ARCHITECTURE DESIGN PROCESS AND DECISIONS
Systems design textbooks often promote a start at the top-most, user-focused level and then
suggest to – step by step – become more and more detailed and specific as the design is refi-
ned. This may involve some of the following steps (see also Figure 8):

• High-level users and use cases are defined.

• Use cases are broken down into high-level system requirements14.

• The system requirements are used to develop the high-level systems design.

• The systems design is used to derive more detailed application SW requirements.

14 This will include both functional and safety requirements.

39www.the-autonomous.com

• The application SW requirements are used to develop the application SW design.

• The application SW design is used to derive requirements for the SW platform and HW
platform.

• The platform requirements are used to develop the SW and HW platform designs.

In practice, the architecture design process is often not top-down. Several factors can contribu-
te to this:

• An incomplete understanding of the problem space or insufficient domain knowledge
may necessitate building a prototype before writing requirements.

• Emergent properties in the environment (e.g., the environment changing when exposed to
the system) can also only be understood once a prototype is in the field.

• External constraints and commercial considerations (e.g., the much longer lead times and
in HW development) can also shape the design before requirements are even known. In
addition, legacy constraints may also come into play.

Working bottom-up can lead to situations where the design of the HW platform constrains the
design of the application SW and ultimately also the conceptual architecture.

The system owner must make architectural decisions at each of the steps described above:

• What is a suitable conceptual architecture for the particular use cases?

• What is a suitable SW architecture for the particular use cases? Does it match the concep-
tual architecture? Is it commercially viable?

• What is a suitable HW architecture for the SW stack? Does it match the conceptual archi-
tecture? Is it commercially viable?

• Which of the available system solution offerings is suitable for the particular use cases?

Figure 8: Idealized mapping process between different architectural abstraction levels.

Conceptual arch.

HW arch. SW arch.

Mapping
conciderations

40 www.the-autonomous.com

2.2 GENERAL REQUIREMENTS

There are many properties that a well-designed AD Intelligence needs to have. Only some of
these are suitable for differentiating different architectures on the conceptual level. Many of the
attributes applicable at the physical level can be assumed to be present as long as the map-
ping of conceptual architecture elements to HW and SW components is done properly, and
automotive development processes are followed.

For completeness, we list some of these properties in the following.

2.2.1 AUTOMOTIVE QUALITY
All components used in the AD Intelligence need to satisfy the usual automotive quality stan-
dards such as AEC-Q100 to ensure suitability for automotive use cases. This can involve robust-
ness to shocks, high and low temperatures, etc.

2.2.2 ADHERENCE TO STANDARDS
There are several industry standards that need to be followed in the development and producti-
on of the AD Intelligence. The ones that immediately come to mind are ISO 26262 (Functional
Safety) [2], ISO 21448 (Safety of the Intended Functionality) [3], ISO 21434 (Cybersecurity) [6], UL
4600 (Safety Case Assessment) [22], and SAE J3018 (Safety of On-Road Testing) [23].

2.2.3 FIELD MONITORING AND UPDATE PROCESS
Even with the most rigorous safety development process, a sufficiently complex system will al-
most inevitably have flaws that were underestimated or unforeseen. Therefore, it is necessary
to continuously monitor vehicles in the field and analyze the collected data, e.g., to establish
that assumptions made in the safety analysis continue to hold true over the lifetime of the vehic-
le. Flaws can be addressed by providing timely updates to minimize exposure to both safety
and security vulnerabilities.

2.2.4 COMFORT AND FUNCTIONALITY
Ultimately, the AD feature needs to provide benefits to the end user. This implies that the AD
function controls the vehicle in a manner that is both comfortable (e.g., low acceleration and
low jerk) and beneficial to the passengers (e.g., a useful speed limit).

2.2.5 MODULARITY AND MAINTAINABILITY
Road vehicles often have an intended minimum economically viable lifetime of around 15
years15. Over such an extended period, it is likely that several components, particularly complex
ones such as high-performance electronics, will need to be maintained or replaced. As AD sys-
tems and their components are relatively expensive, it is advantageous to design them in a
modular (and thus more easily maintainable) manner.

2.2.6 PHYSICAL IMPLEMENTATION
Some attributes are specific to the physical implementation of the AD Intelligence. In general,
the Electronic Control Units (ECUs) involved in the AD functionality need to be sufficiently small

15 Of course, many vehicles continue in service much longer.

41www.the-autonomous.com

to fit inside the constrained internal space of the vehicle. They also need to have sufficiently low
power consumption to not have a severe impact on the range of electric vehicles and/or cause
issues with heat dissipation. Finally, the affordability of the system should also not be neglected.

2.2.7 SAFETY
The AD Intelligence must be developed to the highest applicable level as defined in ISO 26262
(i.e., ASIL D) and ISO 21448 (see also sections 5.3.2 and 5.3.3, respectively)16. There are two
elements of safety for a fail-operational/fail-degraded system: the availability of the system,
which is the probability that the system keeps operating properly when a failure occurs17, and
the safety integrity of the available outputs itself, which avoids an unreasonable risk due to
their execution (e.g., collisions).

ISO 26262 uses the FIT rate (Failures in Time, i.e., per billion hours of operation) as a metric to
quantify the occurrence of random HW faults. Other relevant causes for safety incidents such
as systematic HW faults, systematic SW faults (bugs), and functional insufficiencies (SOTIF), are
mainly addressed by prescribing safety processes18.

To quantify the required level of safety of the system more comprehensively, we define the total
rate of safety incidents (including all the underlying causes listed above) that can lead to un-
safe situations (see G7: Rate of safety incidents). This rate of safety incidents for the system can
be calculated through a Failure Modes, Effects, and Diagnostics Analysis (FMEDA) and a Fault
Tree Analysis (FTA). Based on the reference AD use case, we propose a tentative target for the
rate of safety incidents of 10-100 per billion hours of operation (10-8 – 10-7 per hour).

Different parties from industry and academia have discussed widely varying target rates [24]
[25] [26]. These range from ~10-9 per hour (or even lower) up to ~10-7 per hour. These considera-
tions are often based on the average rate of traffic accidents (or fatalities) for a particular use
case (total or just highway) and an improvement factor over the average human driver.
Such a derivation roughly proceeds as follows:

• The rate of reported traffic accidents (fatal and non-fatal) can be estimated from traffic
statistics [17] [14] [27]. This varies to a degree between countries and by use case, depen-
ding on the typical speed, the traffic situation complexity, and what other traffic partici-
pants are involved. The rate of fatal accidents is in the range of 1.7 x 10-7 – 5 x 10-7 per hour19.

• The rate of reported non-fatal accidents from the same statistics is typically 100x – 1000x
higher, ranging from 7.1 x 10-5 to 2 x 10-4 per hour. However, it cannot necessarily be assu-
med that this ratio will be similar for AD. To demonstrate a positive risk balance, we should
therefore aim to build an ADI that has fewer safety incidents than humans have fatal acci-
dents (see G8: Impact of system failure).

• The demanded improvement factor over the average human driver depends on public
acceptance. Values here can range from as high as 1000x [24], which is used as a refe-
rence in aerospace, to as low as 4-5x [28], which people already find acceptable in sur-
veys. An intermediate value of 10x – 100x may be reasonable [25].

• We also need to neglect contributions from other causes that cannot be addressed by the
ADI (see Figure 9). Only causes equivalent to the cognitive tasks otherwise performed by
the driver can be considered for the target rate of safety incidents.

18 ISO 21448 describes qualitative and quantitative criteria for the evaluation of the residual risk. A quantitative example given is the maximum
number of accidents per hour.
19 Some of these rates are given in incidents per kilometers driven. When necessary, we assume an average speed of 60 km/h for all driving and 110
km/h for highway driving to convert.

16 Through the use of ASIL decomposition, the ASIL for many subsystems and components can be lowered, e.g., to ASIL B(D).
17 Loss of functionality, e.g., turning the system off in case of a malfunction, can lead to a hazard.

42 www.the-autonomous.com

• Our tentative target of 10-8 – 10-7 per hour for the rate of safety incidents is an improvement
of ~10x (1.7x - 50x) over the rate of fatal accidents and an improvement of ~1000x (710x -
20000x) over the total rate of accidents.

2.2.8 PREVENTION OF DEPENDENT FAILURES
Conceptual system architectures for the ADI depend on the assumption that at most one sub-
system suffers from a fault or functional insufficiency at a particular time. Therefore, cascading
failures or common cause failures (jointly known as dependent failures), which have the poten-
tial to simultaneously affect two or more subsystems of the ADI must be prevented. Section 5.4
discusses measures to address dependent failures and to evaluate how well a combination of
measures prevents dependent failures.

Figure 9: Coarse overview of causes contributing to accidents.

2.3 AVAILABILITY

Because there is no human driver to take over control, the availability of the system, i.e., its
readiness for correct service, also becomes crucial. We define three evaluation criteria related
to the availability attribute.

2.3.1 AVAILABILITY OF THE SYSTEM
A suitable conceptual system architecture must take safety-related availability requirements
into account. This means that it is designed in such a way that no single fault can lead to the
failure (or unavailability) of the entire AD Intelligence. At least some degraded functionality

Hardware (processing)

Software

Vehicle (sensors + actuators)

Environment

Random
fault

Functional
insufficiency

Functional
insufficiency

Weather

Other

Other

Systematic
fault

Systematic
fault

Mechanical
fault

Traffic
participants

D
ri

ve
r /

 A
D

 In
te

lli
ge

nc
e

Reported non-fatal
accidents

Fatal accidents
(reported)

Unreported accidents
(non-fatal)

43www.the-autonomous.com

needs to be available and dispatchable. Key questions related to this are:

• Does the conceptual system architecture maintain safety (correctness and availability) in
the presence of any single fault or output insufficiency20? The output of the ADI needs to
have a suitable level of capability (see appendix Classification of Trajectory Capability).

• Does the conceptual system architecture also cover all sufficiently probable dual- and
multi-point faults (including common cause faults)?

If the conceptual system architecture scores badly on these questions, the system owner should
consider it unsuited for AD use cases where unavailability of the system is inherently unsafe,
which is most driving situations other than parking.

2.3.2 DIAGNOSTICS SCHEME
If the different subsystems have self- or cross-checking diagnostic capabilities, they can facili-
tate degradation schemes in the AD Intelligence (see section 2.3.3). This enables them to react
dynamically to each other’s condition, e.g., by proactively switching to a more cautious course
of action. Key questions related to this are:

• Are the different subsystems aware of each other’s condition?

• Can the different subsystems adapt based on each other’s condition?

If the conceptual system architecture scores badly on these questions, the system owner should
consider the increased burden on the degradation scheme.

2.3.3 DEGRADATION SCHEME
While a failure of the AD Intelligence needs to be prevented at all costs (and thus be exceptio-
nally rare), failures of a single subsystem will be much more frequent. This can necessitate swit-
ching to a degraded mode, where the AD Intelligence executes an MRM [47]21. If this occurs too
frequently or unnecessarily (e.g., due to a transient or recoverable fault), it can adversely affect
both the user experience and public safety (e.g., due to blocked public roads). Key questions
related to this are:

• How noticeable is it to the end user when an error occurs in the system?

• Are different levels of degradation possible and how graceful are these?

If the conceptual system architecture scores badly on these questions, the system owner should
consider the increased burden on the integrity of the implemented function, as no additional
lines of defense may exist.

There may be additional practical criteria such as minimizing risk redistribution onto vulnerable
population segments, but such issues are beyond the scope of this report.

21 Degradation schemes can have several levels, which are progressively less safe and desirable. Schemes have been proposed to quantify such
cascades and the respective acceptable probabilities of each level.

20 The definition of single-point faults in ISO 26262 only covers HW faults, whereas we also consider SW faults and functional insufficiencies.

44 www.the-autonomous.com

2.4 NOMINAL FUNCTIONALITY

Whenever degradation is used in the system (see also section 2.3.3), the full nominal functio-
nality is no longer available. This has a noticeable impact on the user experience. In particular,
transient faults and/or false positives should not lead to unnecessary degradation22. Therefore,
the reliability of the AD Intelligence, i.e., its continuity of correct service, is important. We define
one evaluation criterion related to the reliability attribute.

2.4.1 AVAILABILITY OF THE NOMINAL FUNCTIONALITY
A suitable conceptual system architecture is based on concepts that prevent unnecessary de-
gradation, ensuring that the nominal functionality of the AD Intelligence is available as much
as possible. This is also related to the redundancy management scheme, which is based on
some kind of arbitration and ultimately decides the behavior of the system based on a limited
set of inputs. Arbitration algorithms can be relatively simple, e.g., a simple silencing function in
Doer/Checker, or rather complex, e.g., inexact voting algorithms. Complex arbitration algo-
rithms may be difficult to implement in a robust way, potentially outweighing benefits from
achieving a simpler conceptual architecture (see also sections 2.3.1, 2.3.3, 2.5.1, and 2.7.1). Key
questions related to this are:

• Is the system sensitive to false positives23 in one of its subsystems (e.g., a Checker “sees” an
inexistent object), that make the nominal functionality unavailable (see also appendix
Classification of Trajectory Capability)?

• Is the system sufficiently reliable to avoid creating nuisances like blocking public roads?

• Do the arbitration algorithms require complex and abstract decisions?

• Can these decisions be converted to pseudo-code and broken down into manageable lo-
gical statements?

If the conceptual system architecture scores badly on these questions, the system owner should
consider the need for a redesign of the system or alternatively the increased burden on the
quality of the primary functionality. This may require significantly higher testing efforts.

2.5 CYBERSECURITY

While the focus of the Safety & Architecture Working Group is on safety and we consider a de-
tailed cybersecurity analysis outside our scope, some aspects of conceptual system architectu-
res have an indirect impact on security considerations. We define two evaluation criteria rela-
ted to the cybersecurity attribute.

2.5.1 INTERACTIONS BETWEEN SUBSYSTEMS
A suitable conceptual system architecture consists of several well-encapsulated subsystems that
ensure that faults arising within them do not propagate to the rest of the system, i.e., Fault Con-
tainment Units (FCUs). Similar considerations apply from a security perspective, i.e., where few
and well-defined interfaces between subsystems are beneficial. Key questions related to this are:

• How many communication interfaces are there between the different subsystems?

• How frequent and extensive (bandwidth) are these interactions?

23 A false positive in this context indicates an incorrect activation of a safety mechanism even when it was not necessary. An example could be that
a subsystem erroneously (e.g., due to a phantom object it “detects”) considers another subsystem faulty and triggers an MRM.

22 A system that often resorts to an MRM may well remain safe, but would be less useful.

45www.the-autonomous.com

• Are well-defined and restricted interfaces used?

If the conceptual system architecture scores badly on these questions, the system owner should
consider that the security concept must more extensively consider the case where multiple sub-
systems are compromised simultaneously via propagation.

2.5.2 INTERACTIONS WITH EXTERNAL SYSTEMS
It is generally assumed that the AD Intelligence will need to interact with external systems, e.g.,
for map and traffic data, V2X, or to receive updates. Reducing the number of subsystems that are
involved in this can help reduce the attack surface of the system. Key questions related to this are:

• Which subsystems need to communicate with the external systems, e.g., a backend?

• How often and for what purposes (HD maps, updates, etc.) is this communication necessa-
ry24? Complex subsystems providing the nominal functionality will often require access to off-
board information such as HD maps, navigation data, or V2X.

• Which subsystems require updates and how often? Do they use the same update mecha-
nisms? Complex subsystems will often require regular updates (usually OTA), while simple
subsystems may only require rare updates (optionally via a different, more secure update
mechanism).

If the conceptual system architecture scores badly on these questions, the system owner should
consider that the security concept must more extensively consider the case where multiple sub-
systems are compromised simultaneously.

2.6 SCALABILITY

From the perspective of the system owner, a particular implementation of the AD Intelligence
is not developed in isolation.

• Carrying over already developed systems (or components thereof) can provide huge sa-
vings in money and time.

• In addition, most OEMs aim to address different market segments and are therefore inte-
rested in multiple (and hopefully scalable) offering levels. These can range from legally
required NCAP functionality to premium AD or even driverless functions (e.g., MaaS / ro-
botaxis).

We consider both of these as parts of a scalability attribute, for which we define two evaluation
criteria.

2.6.1 SCALABILITY TOWARDS HIGHER AVAILABILITY
AD features classified as SAE Level 4 and above, which are the scope of the Safety & Architec-
ture Working Group, can vary widely, implying vastly different availability goals. For a Highway
Pilot feature, remaining available for tens of seconds and coming to a controlled stop is consi-
dered sufficient. However, a fully driverless vehicle may require some limp-home functionality,
i.e., continuing driving for dozens of minutes up to hours. In the ideal case, the conceptual sys-
tem architecture can be scaled depending on the availability (or integrity) levels required by a
particular use case. Key questions related to this are:

• Does the architecture support higher availability goals than what is necessary for the refe-
rence AD use case, e.g., for driverless use cases?

24 This may depend on the use case, the ODD, and may also change over time.

46 www.the-autonomous.com

• Which subsystems would be added to achieve this?

If the conceptual system architecture scores badly on these questions, the system owner should
consider that it may be difficult to re-use it for more elaborate AD use cases at a later point in
time. It may then be necessary to switch to a different conceptual system architecture.

2.6.2 SCALABILITY TOWARDS DIFFERENT OFFERING LEVELS
If multiple price segments or offering levels have to be addressed, it is highly advantageous
from a cost perspective to develop all such systems jointly. Higher offering levels (offering AD
features) can then be developed as extensions of lower ones (e.g., ADAS features) or vice ver-
sa. Such systems may even be similar from a functionality perspective (e.g., both performing
highway driving with lane changes at up to 130 km/h) and only differ from an integrity and
availability perspective (e.g., requiring supervision from an attentive driver or not). Key questi-
ons related to this are:

• Does the architecture support reusing ADAS25 (with minor modifications) as a subsystem
(role and provided functionality)?

• Which subsystems are specific to SAE L4 use cases?

If the conceptual system architecture scores badly on these questions, the system owner should
consider that this may entail higher development costs.

2.7 SIMPLICITY

While we do not consider physical implementation options as part of the Safety & Architecture
Working Group, some aspects of conceptual system architectures have a pronounced – though
indirect – impact on this. Complex architectures with tightly coupled subsystems are generally
harder to implement, validate, and verify. Ideally, architectures should be sufficiently simple such
that they can be easily understood, and their subsystems can be developed and validated inde-
pendently of each other. The latter is particularly important as testing a black box system to the
required failure rates for AD is nigh impossible (see also G1: Design faults in large and complex
monolithic systems). We define three evaluation criteria related to the simplicity attribute.

2.7.1 NUMBER, COMPLEXITY, AND PERFORMANCE OF SUBSYSTEMS
As stated before, suitable conceptual system architectures should consist of loosely coupled,
cohesive subsystems (see section 2.5.1). As long as the number of subsystems and interactions
is relatively low (e.g., manageable with current methodologies), emergent behavior can be
more easily prevented. The development and HW costs of each subsystem depend more stron-
gly on its internal complexity and performance requirements. This can range from essentially a
smart switch with minimal logic to high-performance, AI-based subsystems for perception and
planning. Key questions related to this are:

• How many subsystems exist in the system (also implying development and HW costs)?

• How complex are these subsystems (e.g., involving ML/AI-based approaches or algorithms
that are hard to implement or calibrate properly, also implying SW implementation cost)?

• What are the performance requirements of these subsystems (also implying power con-
sumption and HW cost)?

25 It should be noted that SAE L2 systems rely on constant supervision by the driver, who must intervene immediately in case of a system failure.

47www.the-autonomous.com

If the conceptual system architecture scores badly on these questions, the system owner should
be aware that the cost to implement and manufacture a corresponding physical architecture
is likely to be higher.

2.7.2 REQUIRED DIVERSITY
Ensuring that multiple subsystems do not fail simultaneously due to systematic faults and/or
functional insufficiencies (see also G7: Rate of safety incidents) poses a pronounced new chal-
lenge in AD. On the level of a conceptual system architecture, this generally requires asking for
some level of diversity between subsystems. Exploiting asymmetries, e.g., by making use of
Doer/Checker approaches, can make it easier to ensure this. Key questions related to this are:

• Between which subsystems is diversity required (also implying increased development
costs)?

• Is there a large number of complex and high-performance subsystems for which not many
different suppliers or approaches exist?

If the conceptual system architecture scores badly on these questions, the system owner should
be aware of the additional cost and difficulty in implementing provably diverse SW.

2.7.3 COMPLEXITY OF VALIDATION
A well-known challenge in AD is how to demonstrate that the system is safe enough. To do this,
testing is necessary – though not sufficient. The associated effort scales dramatically with the
target failure rate of the system or subsystem. Key questions related to this are:

• Can subsystems be validated independently from each other?

• If so, does the required validation effort decrease significantly (e.g., 10-8 per hour / 100 mil-
lion hours for testing of the integrated system → 10-6 per hour / 1 million hours for each iso-
lated subsystem[61]26)?

• What is the complexity of ensuring the absence of correlated or common cause failures
between subsystems?

If the conceptual system architecture scores badly on these questions, the system owner should
be aware that testing will pose a significant challenge.

2.8 SAFETY OF THE INTENDED FUNCTIONALITY (SOTIF)

To ensure an acceptable level of dependability for AD/ADAS systems, the analysis of SOTIF
aspects must be included in architectural design decisions from the beginning. Although the
impact of SOTIF on the conceptual architecture of ADs has not been sufficiently examined, we
propose some ideas that could help to determine whether particular architectures have the
potential to better support SOTIF.

We focus on the idea that each channel must be designed to ensure a safe vehicle behavior in
all the expected operational conditions depending on its functional responsibility (e.g., nomi-
nal, or fallback capabilities). Then, the safe interaction between the different architectural ele-
ments shall be ensured for system safety. For this, dedicated components supporting SOTIF-re-
lated tasks are required.

26 The more independent the subsystems are, the easier it is to argue that there are no shared functional insufficiencies. For example, Mobileye’s
True Redundancy concept [61] proposes using different sensor modalities.

48 www.the-autonomous.com

The analysis of the different modes of operation, ODD subsets and the intended functionality
of the system may lead to the addition of sensors, components or additional channels to com-
pensate for the functional insufficiencies.

In general, modular architectures can support SOTIF, by consisting of subsystems that comple-
ment each other functionally. This is evident for the challenges related to ODD and triggering
conditions analysis, in combination with scenario-based validation. Acceptance criteria could
also be defined per subsystem and in a more granular manner, reducing validation effort. Ad-
ditionally, SOTIF issues are expected to require regular software updates (e.g., new traffic
signs, extensions of the environmental model, safety case changes), which is facilitated by mo-
dular approaches.

2.8.1 SUPPORT TO ACCOMMODATE FUNCTIONAL INSUFFICIENCIES
As stated before, suitable conceptual system architectures can compensate not only for faults,
but also functional insufficiencies. To do so, they may foresee diverse sensor modalities and
may define schemes for dealing with different driving tasks within particular ODDs. Key questi-
ons related to this are:

• Is the architectural design suitable for the intended ODD and does it support an effective
implementation of the vehicle's driving policy (e.g., OEDR, DDT, maneuvers, traffic rules)?

• Is the diversity of the architectural design elements sufficient to cover all the potential trig-
gering conditions and output insufficiencies (e.g., the perception subsystem consists of di-
verse algorithms applying deep learning vs sensor fusion perception, avoidance of com-
mon cause false negatives when detecting/classifying objects)?

• Does the architectural design include diverse sensor modalities (e.g., vision, lidar, radar,
localization) to compensate for performance limitations of the environment perception
sensors?

If the conceptual system architecture scores badly on these questions, the system owner should
be aware that the efforts to implement functional modifications addressing SOTIF-related risks
are likely to be higher.

2.8.2 SUPPORT MANAGEMENT OF OPERATIONAL CONDITIONS
A suitable conceptual system architecture should be aware of the current ODD and react
accordingly. This may also include driver monitoring. Key questions related to this are:

• Does the architecture include components to monitor adequately the ODD in different
operational conditions?

• Does the architecture ensure safe usage of the driving function in all operational conditi-
ons (e.g., control takeover, activation/deactivation, degraded mode, emergency mode)?

• Does the architecture support the data collection and monitoring of safety performance
indicators during field operation (e.g., to improve the set of known scenarios, data possib-
ly collected in real-time)?

If the conceptual system architecture scores badly on these questions, the system owner should
be aware that mitigating risks associated with potential functional insufficiencies and/or trig-
gering conditions, including those that are to be uncovered during operation, will likely be dif-
ficult to achieve. This can lead to the fact that a restriction of the intended functionality must be
taken into consideration more than originally planned.

49www.the-autonomous.com

2.9 TABLE OF EVALUATION CRITERIA

Figure 10 illustrates the structure of the evaluation criteria. Each attribute is split into several
evaluation criteria, which in turn have several associated key questions used during the evalu-
ation. The full set of evaluation criteria is listed in Table 2, along with related system require-
ments (compare section 1.3), general constraints (compare section 1.5.1), and design principles
(compare section 1.5.2).

Figure 10: Structure of relevant attributes, evaluation criteria, and key questions.

Availability

Availability of the
system

Diagnostics scheme

Nominal
Functionality

Availability of the
nominal functionality

Cybersecurity

Interactions between
subsystems

Interactions with
external systems

Degradation scheme

Scalability

Scalability towards
higher availability

Scalability towards
different offering

levels

Simplicity

Required diversity

SOTIF

Support to
accommodate functional

insufficiencies

Support to manage
operational
conditions

Complexity of
validation

Number, complexity,
and performance of

subsystems

?

?

?

Attributes Evaluation
criteria

Key questions

50 www.the-autonomous.com

Table 2: Summary of the evaluation criteria.

Attribute Evaluation
criterion Example observations Related

Availability

Availability of
the system

• There are no obvious single-
point faults in the architec-
ture.

• The architecture can deal
with some multi-point faults.

S1: AD Intelligence output time-
liness
S2: AD Intelligence output
availability
S3: AD Intelligence output cor-
rectness
S4: AD Intelligence output con-
sistency
G1: Design faults in large and
complex monolithic systems
G2: Single-event upsets in non-
redundant HW
G3: Need for safety by design
G4: Specification of critical sce-
narios
D1: Fault Containment Units
D3: Diversity and redundancy
for complex subsystems
D7: Mitigation of common cau-
se hazards

Diagnostics
scheme

• Subsystems are aware of
other subsystems’ status and
can adapt their behavior
accordingly.

S6: AD Intelligence diagnostics

Degradation
scheme

• The architecture has a defi-
ned degradation scheme.

• The failure of a single sub-
system does not immediately
lead to an emergency reacti-
on (e.g., MRM).

S2: AD Intelligence output
availability
D6: Transient and permanent
faults
D7: Mitigation of common cau-
se hazards

Nominal
functionality

Availability of
the nominal
functionality

• Frequently occurring transient
faults do not lead to an emer-
gency reaction (e.g., MRM).

• The arbitration decisions can
be broken down into
manageable logical state-
ments.

G5: Frequent switching

D6: Transient and permanent
faults

D7: Mitigation of common cau-
se hazards

Cybersecurity

Interactions
between
subsystems

• Subsystems only interact via
well-defined interfaces.

D1: Fault Containment Units
D5: Avoidance of emergent be-
havior

Interactions
with external
systems

• Few subsystems need to
communicate with external
systems.

• Few subsystems require fre-
quent (e.g., OTA) updates.

• Some subsystems can make
use of a different, slower up-
date mechanism (e.g., in
workshop).

51www.the-autonomous.com

Attribute Evaluation
criterion Example observations Related

Scalability

Scalability to-
wards higher
availability

• The architecture can be extended by
adding more subsystems to achieve
higher availability or integrity.

Scalability
towards
different
offering levels

• Some of the subsystems are very
similar to SAE L2 ADAS systems in
functionality and could be carried
over with minor modifications.

Simplicity

Number,
complexity,
and perfor-
mance of
subsystems

• The number of subsystems is small.

• The number of complex subsys-
tems is small.

• The number of subsystems with
high computational performance
requirements is small.

D1: Fault Containment
Units
D2: Simple and complex
subsystems
D5: Avoidance of emer-
gent behavior
D7: Mitigation of common
cause hazards

Required
diversity

• Diversity is required between few
subsystems.

• Diverse subsystems perform
complementary functions (e.g.,
Doer / Checker).

• Few complex subsystems require
diversity.

S2: AD Intelligence output
availability
S3: AD Intelligence output
correctness
G6: Checks to determine
plausibility of a
subsystem
D3: Diversity and
redundancy for complex
subsystems
D7: Mitigation of common
cause hazards

Complexity of
validation

• The different subsystems are loo-
sely coupled and cohesive
enough to be independently vali-
dated.

• The target failure rate of each
subsystem requires a managea-
ble testing effort.

G1: Design faults in large
and complex monolithic
systems
G3: Need for safety by
design
D4: Provable correctness
for simple subsystems

Safety of the
intended
functionality

Support to
accommoda-
te functional
insufficiencies

• The diversity of the architectural
design elements (e.g., indepen-
dent sensor sets) decreases the
risk of unhandled output insuffi-
ciencies.

G1: Design faults in large
and complex monolithic
systems
G4: Specification of criti-
cal scenarios
G7: Rate of safety
incidents
G8: Impact of system
failure
D3: Diversity and
redundancy for complex
subsystems
D4: Provable correctness
for simple subsystems
D7: Mitigation of
common cause hazards

Support to
manage ope-
rational con-
ditions

• The separation into independent
channels with specific capabili-
ties enables a high level of vehic-
le situational awareness.

S5: Detection of
perception-related faults
and output insufficiencies
G4: Specification of criti-
cal scenarios
D7: Mitigation of
common cause hazards

52 www.the-autonomous.com

3 CANDIDATE
ARCHITECTURES
In this section, we collect and describe different proposed conceptual system architectures that
we will evaluate in section 4, first generically, then in the context of an SAE L4 Highway Pilot as
the reference use case. We first describe the process we used for collecting such candidate
architectures based on publicly available sources and the experience of the Working Group
members (see section 3.1). Then, we identify generic underlying principles that are shared bet-
ween multiple candidate architectures (see section 3.2). Finally, we describe the structure and
behavior of each candidate architecture, where we cluster them into three major types:

1. MONOLITHIC ARCHITECTURES
(see section 3.3) represent the status quo for SAE L2 ADAS and
serve as the baseline for the evaluation.

2. SYMMETRIC ARCHITECTURES
(see section 3.4) rely on multiple channels providing the same or
similar functions, often with some voting mechanism (see sections
3.2.1.1 and 3.2.1.2) determining which output to use.

3. ASYMMETRIC ARCHITECTURES
(see section 3.5) employ asymmetric decompositions to reduce the
complexity of some subsystems, e.g., via Doer / Checker (see secti-
on 3.2.1.3) or Active / Hot Stand-By approaches (see section
3.2.1.5).

For each candidate architecture, relevant references and the considered variants are stated. If
applicable, employed generic principles (see section 3.2) and design principles are listed. The
structure of each conceptual system architecture is described via static modeling (see Figure 11),
while its behavior is described via dynamic modeling (see Figure 12). The level of detail provided
is intended to give an understanding of the architecture, while very specific details can be found
in the respective source material.

53www.the-autonomous.com

a. Colored boxes indicate complex subsystems. Gray boxes indicate simple subsystems.

b. White circles indicate interactions between subsystems, either uni-directional or bi-directi-
onal. These are explained in more detail in the respective sequence diagram.
Shown example: a uni-directional interface (#4) from subsystem A to subsystem C.

c. Black boxes on the edge indicate interfaces of the ADI towards surrounding systems.

d. Black circles indicate interactions of a subsystem with a surrounding system. To reduce
clutter, some of these are not shown in full and only point at the respective interface.
Shown example: a bi-directional interface (#2) of subsystem B with the Sensor System.

Figure 11: Explanation of the block diagrams used in the architecture description.

a. Each numbered interaction states the data type, e.g., sensor data, trajectory, or validation re-
sult. The particular value for this scenario is stated in parentheses. The sequence diagrams in
the architecture description show the nominal case (without faults or functional insufficiencies).

b. Sequence diagrams show the same subsystems and interfaces as the block diagrams.
Figure 12: Explanation of the sequence diagrams used in the architecture description.

Sensor
System A B C Actuator

System

DataType1
(correct content)

DataType2
(correct content)

DataType3
(correct content)

DataType4
(correct content)

DataType5
(correct content)

DataType6
(correct content)

DataType7
(correct content)

Subsystem A

Subsystem C

Subsystem BIn
te

rf
a

ce
 to

 S
en

so
r S

ys
te

m

Interface to UI System

UserInput

DiagnosticsData

UserInformation

SystemStatus

ActuatorDataSensorData

SensorControl

Interface to Diagnostics System

In
te

rf
a

ce
 to

 A
ct

ua
to

r S
ys

te
m1

6

2

4

4

5

5

3

3

54 www.the-autonomous.com

3.1 COLLECTION PROCESS
In the context of AD, a variety of architectural concepts have been proposed by both commer-
cial and academic players. Many of these are meant to address a specific topic, but do not
present a complete architecture covering all abstraction levels. Proposals regarding conceptu-
al system architectures can be somewhat tricky:

• Proposals from commercial players are sometimes incomplete, i.e., they only describe the
concepts and components on a high level, but not how they work and interact in detail.

• Proposals from academic players are sometimes challenging from a commercial perspec-
tive, i.e., they neglect the high cost of implementing textbook redundancy and diversity.

As part of the activities of the Safety & Architecture Working Group, we have screened propo-
sed architectural concepts for their applicability to the conceptual abstraction level.

• When possible, we tried to extract generic underlying principles and cluster similar architectures.

• When necessary, we filled in missing details (from partial or very generic proposals) ba-
sed on reasonable assumptions to be able to evaluate an architecture’s behavior in
certain scenarios and ultimately whether system requirements can be met.

3.2 OVERVIEW OF ARCHITECTURAL DESIGN PATTERNS

The conceptual system architectures we have identified share a set of underlying architectural
design patterns. In general, such patterns describe well-known (“textbook”) solutions to pro-
blems commonly faced by architects. These can cover SW functionality, but also system safety
as described in [29] or in appendix B of IEC 61508-6:2010 [30]. Within the scope of the Safety &
Architecture Working Group, we focus on the latter, i.e., architectural design patterns that help
ensure the correctness and availability of a system comprised of Fault Containment Units, i.e.,
subsystems that can be assumed to fail independently of each other when additional care is
taken to avoid common cause failures.

Well-known approaches for fail-operational systems, e.g., from safety-critical fields such as
aviation, are not always directly applicable to safe autonomous driving. In this context, we
have found that the safety concepts for AD Intelligence have evolved in recent years. While
ensuring reliability and availability through redundancy remains the most important strategy,
SAE Level 4 AD systems require different structural elements (i.e., channels and subsys-
tems[30]27), organized in a hierarchical or distributed way for distinct safety responsibilities. We
also recognize that the focus of approaches from other industries is on functional safety, while
the area of automated driving also needs a strong focus on SOTIF (see e.g., [31]).

This section provides an overview of the most common redundancy-based architecture pat-
terns. A wider discussion of safety architecture design patterns can be found in literature [29].
Although we focus on high-level safety concepts, it is noteworthy to consider that the architec-
tural patterns are also applicable at lower levels of abstraction, depending on specific use
cases. Furthermore, additional safety mechanisms, such as sensor fusion for the perception
subsystem, are a well-established approach of AD systems to avoid the single failure and
weaknesses of any individual sensor. The main challenge is to trade off complexity and perfor-
mance while ensuring that the implemented safety mechanism covers relevant faults and func-
tional insufficiencies. Other design patterns, such as watchdogs and sanity checks, are not
explicitly mentioned as they are considered detailed implementations.

27 A channel according to IEC 61508:2010 [30] refers to a system or subsystem, i.e., a separable building block of a system. The channel we are
considering in the context of this report refers to a subsystem composed of a perception element, and a planning element, i.e., the plan stage of the
so-called "sense, plan, act" model of automated driving, in other words, the end-to-end functionality from sensor input to trajectory output.

55www.the-autonomous.com

3.2.1 INTER-SUBSYSTEM PATTERNS
Inter-subsystem patterns describe how to combine multiple subsystems into an architecture.
The subsystems are assumed to fail independently.

3.2.1.1 ARBITRATION AND VOTING

With two or more inputs coming from homogeneous (symmetric) or heterogeneous (asymme-
tric) subsystems, an element named “arbiter” acts as the decision maker that defines the output.
The design of such an arbiter requires high safety integrity and low complexity.

There are different implementations of arbitration depending on the type of input data, the
number of available input interfaces and the voting criteria. These aspects depend on the re-
sponsibility of the arbiter and are decisive for the performance of the safety measures. Subsys-
tem independence (e.g., diversity in generating inputs) is fundamental to managing common
cause failures.

Majority voting can be considered a special case of arbitration.

Applicability:

• The original approach, i.e., binary inputs, odd number of subsystems, and majority voting,
can be considered the simplest case. Such a simple arbiter could be used, for example, to
determine whether to enable a separate safety subsystem.

• For more complex cases, such as continuous-valued signals (e.g., acceleration) or hetero-
geneous components, a more sophisticated implementation is required. This problem is
comparable to inexact agreement.

• Some examples of arbitration criteria are plausibility checks, risk estimation, or scenario-
based prioritization.

• An aspect to consider is the potentially high development costs for the independent sub-
systems.

• To ensure fail-operational arbitration, multiple arbiters may be considered.

3.2.1.2 AGREEMENT

Redundant subsystems called “participants” interact to reach a decision, without an arbitration
component. The agreement pattern is based on a closed loop approach and may consist of

Subsystem 2 Arbiter (Voter)

...

Subsystem 1
output

output

56 www.the-autonomous.com

multiple rounds of information exchange between all (available) participants.

Applicability:

• Like voting, agreement is applicable for redundant subsystems.

• Agreement mechanisms are also used for the detection and isolation of asymmetric faults.

• Like voting, there are challenges related to the implementation of agreement, especially
those related to the type of input data (e.g., inexact agreement). Solutions for this can be
the use of convergence algorithms, confidence rating, approximate outputs considering a
given precision and allowed system accuracy.

• Agreement algorithms might not be viable when there are numerous acceptable decision
candidates that might differ significantly due to the use of nondeterministic algorithms.

3.2.1.3 DOER/CHECKER (OR CONTROL/MONITOR)

One subsystem, the “Doer”, performs a function while another, the “Checker”, monitors it. The che-
cker requires higher safety integrity and lower complexity than the doer. The doer implements the
nominal capabilities of the system.

There are different implementations of Doer / Checker depending on the comparison strategy and
how monitoring is performed. Additional self-checks and cross-checks may be required to prevent
single-point failure in the system. Subsystem independence (e.g., separate hardware) is required
for high reliability and availability.

Applicability:

• This approach is useful if either a complex Doer can be monitored by a comparatively
simpler Checker, or as a diversity measure (in the case of equal complexity).

• Some factors such as time lags and computational accuracy might affect the performance
of the monitoring function.

• The original Doer / Checker pattern without further redundancy, as shown in the figure, is
only applicable to fail-silent systems.

3.2.1.4 ENVELOPE FEEDBACK PATTERN

This is an extension of the Doer / Checker basic pattern. Instead of just retroactively checking

Arbiter (Decider)

Checker

Doer
output

outputchecking
envelope

yes/no

Arbiter (Decider)

Checker

Doer
output

yes/no

57www.the-autonomous.com

the Doer’s output, the Checker provides its checking envelope to the Doer. This can allow the
Doer to adjust its output such that it minimizes false positives in the Checker28.
As an example, the Checker may detect a ghost obstacle in a neighboring lane. While the Doer
may originally have created a lane-change trajectory, it may decide to instead stay in the cur-
rent lane for the time being if this is considered safe by both Doer and Checker.

Applicability:

• This approach is useful to decrease the rate of false positives caused by a less capable
Checker.

• A “lazy” Doer would break the independence between Doer and Checker. The implemen-
tation must prevent that the Doer creates output that relies too heavily on the checking
envelope and neglects the Doer’s own environment model.

3.2.1.5 ACTIVE AND HOT STAND-BY (OR DUPLEX PATTERN)

Two homogeneous or heterogeneous subsystems operate continuously in parallel while only
one of them is active at any given time. A fault detection mechanism acts as a switch between
the subsystems. The fault detection mechanism requires redundancy (e.g., cross-checking) to
avoid single-point failures or more complicated solutions involving “default bypasses” (e.g., de-
fault to Active) in case of loss of the Arbiter.

The component acting as comparator and fault detector shall be designed carefully to ensure
high fault coverage. Identifying faulty subsystems at runtime requires high fault coverage for
the diagnostic mechanisms [32].

Related alternatives are:

• Warm Stand-By: the reserve subsystem runs in idle state, and

• Cold Stand-By: the reserve subsystem is normally off.

Applicability:

• This approach is suitable for functionalities with strict time constraints.

• The decision between hot, warm, or cold redundancy depends on the required safety le-
vel, response time, and power consumption.

3.2.2 INTRA-SUBSYSTEM PATTERNS
Intra-subsystem patterns describe how to improve the behavior of a single subsystem within an
architecture. Such patterns can be considered supplemental and do not have a direct impact
on the overall system architecture.

Arbiter (Switch)

Hot-Standby

Active
output

output

28 This has some similarities with feed-forward mechanisms. The ‘disturbance’ in this case comes from the Decider silencing the Doer’s output per
request of the Checker.

58 www.the-autonomous.com

3.2.2.1 BUFFERING PATTERN

In this pattern, a single fail-silent subsystem either produces safe output or none. The nominal out-
put or a dedicated fallback output is buffered in a different element and is used for a limited
amount of time if the subsystem produces no output.

As an example, the subsystem’s output can be a trajectory to control the vehicle. The nominal out-
put will typically be adapted multiple times per second to the environment. A fallback output
could be a fully pre-planned MRM trajectory, which does not rely on any further sensor input.

Applicability:

• This approach is useful as a last resort to ensure the system’s availability in case of multi-
ple simultaneous subsystem failures.

• For low-speed AD use cases, it may be sufficient to rely on the buffered output without dy-
namic adaptations. For high-speed AD uses cases, where the time to reach a minimal risk
condition can be much longer, this should only be considered a mitigation measure.

• The buffered output must be validated so that it can be considered safe with respect to
the current environment (road, traffic participants, ego vehicle state, etc.).

• The buffering element should be connected to the Actuator System with as few interme-
diary elements as possible.

3.3 MONOLITHIC ARCHITECTURES
3.3.1 SINGLE-CHANNEL ARCHITECTURE
This section describes the simplest possible conceptual system architecture, consisting of a sin-
gle, monolithic subsystem. Such architectures are typical for ADAS.

3.3.1.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
Centralizing all ADAS functionality into a single domain controller was a significant simplifica-
tion compared to earlier architectures where different functions were provided by different con-
trollers.

Due to its monolithic nature, this architecture does not employ any inter-subsystem architectural
design patterns.

3.3.1.2 STRUCTURAL DESCRIPTION
The proposed architecture is monolithic, i.e., it only consists of a single FCU with interfaces
identical to the external interfaces of the AD Intelligence (see Figure 13).

Buffer

Active
output

Fallback
output

59www.the-autonomous.com

Figure 13: Block diagram of the Single-Channel architecture.

3.3.1.3 BEHAVIORAL DESCRIPTION
Due to its monolithic nature, the behavior of the system is straightforward (see Table 3, Figure
14, and Figure 15).

Table 3: Behavioral description of the subsystems in the Single-Channel architecture.

Figure 14: Sequence diagram of the Single-Channel architecture. The nominal case without faults or functional insufficiencies is shown.

Sensor
System Channel Actuator

System

SensorData
(correct)

ActuatorData
(correct)

Subsystem Behavior

Channel

• Receive SensorData from Sensor System (interface #1).

• Generate ActuatorData (nominal trajectory) and send it to Actuator System
(interface #2).

• If an internal fault is detected (or the SystemStatus is not OK), remain silent.

Channel

In
te

rf
a

ce
 to

 S
en

so
r S

ys
te

m

Interface to UI System

UserInput

DiagnosticsData

UserInformation

SystemStatus

ActuatorDataSensorData

SensorControl

Interface to Diagnostics System

In
te

rf
a

ce
 to

 A
ct

ua
to

r S
ys

te
m

1 2

60 www.the-autonomous.com

Figure 15: State diagram of the Single-Channel architecture.

3.4 SYMMETRIC ARCHITECTURES
3.4.1 MAJORITY VOTING ARCHITECTURE
This section follows the specific variant of majority voting called “triple modular redundancy
(TMR)” with a particular focus on the redundancy aspects of the architecture. As described in
[33], this type of redundancy is commonly used in very high reliability systems such as those used
in aerospace. To the authors’ knowledge, a strict application of this architecture in the AD do-
main has not yet been officially published. Still, we include it in the report, as the voting para-
digm is an obvious and tempting approach for AD systems, and its properties therefore deserve
a closer look.

3.4.1.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
Triple modular redundancy is a specific implementation of “N-Modular Redundancy” where
three identical channels produce results that are sent to a “Voter”. The Voter is responsible for
looking at the results from the three channels and deciding which result is likely to be correct.

• The Voter operates based on the assumption that common mode failures are much less li-
kely than single-event errors. This implies that the majority is correct. Therefore, if the voter
observes two identical results and one dissimilar result, it will assume that the dissimilar
result came about through a failure and the two identical results are in fact correct.

• Different numbers of Voters are possible. The original version of TMR [34] only employs a
single Voter, which may pose a single point of failure from the availability perspective;
other versions of TMR [35] propose three redundant voters. Other combinations are also
possible if some arbitration is possible on the receiver side, e.g., an order of preference if
the (single) Voter is silent or if the (multiple) Voters disagree. The variant described in this
section employs two Voters, with the Actuator System preferring one over the other.

• In the strictest sense, only identical results can form such a majority. This can be relaxed to
some extent to “sufficiently similar” results via inexact voting approaches.

3.4.1.2 STRUCTURAL DESCRIPTION
The proposed conceptual architecture consists of three complex and two simple subsystems:

• Channels 1-3 have similar roles: they compute results. For exact voting, these channels
would most likely need to be implemented in an identical way unless the provided functio-
nality is very simple and straightforward. However, even then replica indeterminism may
cause issues due to minute differences in timing. For inexact voting, some degree of diver-
sity may be allowed. We assume that this option is chosen to prevent common cause failu-
res.

• Voters 1-2 have similar roles: they decide the correct result by comparing the outputs of the
channels. While simple versions of TMR only have a single Voter, redundancy is necessary
to ensure availability. If no majority can be found, the Voter can either remain silent, prefer
one of the channels, or resort to a pre-planned (buffered) MRM trajectory.

The interfaces to the three channels are identical, and the output of each channel is fed to the
two Voters. The results of the Voters are then fed to the Actuator System of the vehicle.

S1 - Nominal
Channel produces comfort output.
Channel in control.

S2 - Silent
No output.

Detectable fault
in channel.

61www.the-autonomous.com

Figure 16: Block diagram of the Majority Voting architecture.

3.4.1.3 BEHAVIORAL DESCRIPTION
Table 4 describes the behavior of each of the subsystems in more detail. The interaction bet-
ween subsystems is described in the sequence diagram in Figure 17.

Table 4: Behavioral description of the subsystems in the Majority Voting architecture.

In the proposed architecture, each channel contains all functions required to implement the
entire AD functionality. This includes taking the sensors of the vehicle as input, generating an
environment model, trajectories, and actuator setpoints, checking whether the vehicle is ope-
rating inside the ODD, etc.

Like the Single-Channel architecture, each channel would:

• Process received sensor data into a consistent environment model.

• Periodically generate trajectories and corresponding actuator setpoints.

• Send these setpoints to the Voter (or ultimately to the Actuator System).

• Remain silent if an internal fault within the channel is detected.

The Voters base their decision on the following scheme:

• Only uncorrupted received results are considered.

• Each received result is compared to every other received result. To implement inexact vo-

Subsystem Behavior

Channel
[1-3]

• Receive SensorData from Sensor System (interface #1 / #2 / #3).

• Generate ActuatorData (nominal trajectory and optionally pre-computed
MRM) and send it to Voters (interfaces #4&5 / #6&7 / #8&9).

Voter
[1-2]

• Receive ActuatorData from channels (interfaces #4&6&8 / #5&7&9).

• Find majority in ActuatorData via inexact voting and send majority output
to Actuator System (interface #10 / #11).

Channel 1

Channel 2

Voter 1

Voter 2Channel 3In
te

rf
a

ce
 to

 S
en

so
r S

ys
te

m

Interface to UI System

UserInput

DiagnosticsData

UserInformation

SystemStatus

ActuatorDataSensorData

SensorControl

Interface to Diagnostics System

In
te

rf
a

ce
 to

 A
ct

ua
to

r S
ys

te
m1

2

10

113

4

5

4

5

8

9

6

6

7

7

9

8

62 www.the-autonomous.com

ting, a degree of similarity between results needs to be defined and calculated, which
may not be straight-forward. If such a majority is found, it is forwarded to the Actuator Sys-
tem. Otherwise, the Voter can (depending on implementation):

▪ Remain silent.
▪ Prefer one of the remaining channels.
▪ Resort to a pre-planned (buffered) MRM trajectory or blind braking.

• If one of the channels is found to be permanently faulty, it can also make sense to send
the remaining channels into a degraded mode.

• The full behavior of the Voter is summarized in Table 5, which lists all relevant permutations.

Table 5: Voter behavior in the Majority Voting architecture. Only the relevant permutations are listed, i.e.,
there is no preference of A over B or C.

From this table we can observe the simplicity in the Voter’s design, i.e., the number of possible
combinations the Voter must consider is small. We also see some of the Majority Voting archi-
tecture’s major flaws:

• Simple voting patterns rely on exact voting. This works well if failure modes are unique
and common mode failures are unlikely.

• More advanced voting patterns rely on inexact voting. In our case, diversity is necessary to
ensure sufficient independence and prevent common mode failures. Inexact voting relies
on the assumption that diverse implementations will produce relatively similar results. Whi-
le simple problems may have a single “best / correct” solution, more complicated or even
complex problems may have multiple “good” solutions, which can differ fundamentally
(e.g., evading left, evading right, or coming to a stop in front of an obstacle)29.

• It is therefore possible for the Voter to reach a state where no decision can be made if
each of the channels produces a different result[25][89]30. This would need to be treated
as a fault scenario and a predetermined recovery action would take place.

29 It should be noted that this may be more pronounced in the automotive domain (busy road) than in the aerospace domain (empty sky). However,
voting patterns can still be useful on a lower level if decisions are binary, e.g., voting on the existence of an object based on sensor modalities.
30 Quote from : Provably correct Decision System: Whenever two independent redundant subsystems are involved in a decision in a complex
environment there is the possibility of two different correct outcomes. The introduction of a third subsystem will only mask a single fault if the involved
systems are replica determinate .

Channel 1 output Channel 2 output Channel 3 output Voter decision

Result A Result B~A Result C~A Result A

Result A Result B~A Result C Result A

Result A Result B~A None Result A

Result A Result B Result C
Silent (fault) / prefer
result A / pre-computed
MRM

Result A Result B None
Silent (fault) / prefer
result A / pre-computed
MRM

Result A None None Result A

None None None Silent (fault) / pre-
computed MRM

63www.the-autonomous.com

Figure 17: Sequence diagram of the Majority Voting architecture. The nominal case without faults or functional insufficiencies is shown.

3.4.2 CROSS-CHECKING PAIR ARCHITECTURE
3.4.2.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
The Cross-Checking Pair (CCP) architecture is based on a combination of the Doer / Checker
basic pattern and the Buffering supplementary pattern. It is related to the 1oo2D architecture
described in appendix B of IEC 61508-6:2010 [30] and also loosely resembles a reduced variant
of the Daruma architecture (see section 3.4.3) where disagreement between the two channels
is resolved via buffering. This architecture is inspired by the straightforward approach of con-
structing a fail-operational system by “making two channels that check each other” and rela-
ted, often more HW-centered, approaches [36].

3.4.2.2 STRUCTURAL DESCRIPTION
The Cross-Checking Pair architecture (see Figure 18) consists of two complex and two simple
subsystems:

• Channels 1-2 have similar roles: they produce actuator commands and also validate the
actuator commands produced by the other channel against their own environment model.
To ensure sufficient independence, the channels must be diverse. The outputs they produ-
ce can vary in their focus, i.e., at least one must produce nominal (comfort) actuator com-
mands, but the other may produce degraded or MRM actuator commands. At least one
channel must also produce a pre-planned MRM that can be buffered.

• Selectors 1-2 have the same role: they collect actuator commands and validation results
from the channels and select the best-ranked actuator commands that are considered OK
by both channels. If the two channels cannot find a trajectory they both consider OK, the
Selectors resort to the buffered, pre-planned MRM.

Sensor
System Channel 1 Channel 2 Channel 3 Voter 1 Voter 2 Actuator

System

SensorData – C1
(correct)

SensorData – C2
(correct)

SensorData – C3
(correct)

ActuatorData – C1
(correct A)

ActuatorData – C2
(correct A)

ActuatorData – C3
(correct B)

ActuatorData – sel.
(correct A)

ActuatorData – sel.
(correct A)

64 www.the-autonomous.com

Figure 18: Block diagram of the Cross-Checking Pair architecture.

3.4.2.3 BEHAVIORAL DESCRIPTION
Table 6 describes the behavior of each of the subsystems in more detail. The interaction bet-
ween subsystems is described in the sequence diagram in Figure 19.

Table 6: Behavioral description of the subsystems in the Cross-Checking Pair architecture.

Subsystem Behavior

Channel
[1-2]

• Receive SensorData from Sensor System and generate environment model
(interface #1 / #2).

• Generate ActuatorData (for nominal trajectory and pre-planned MRM)
and send it to other channel (interface #3) and Selectors (interfaces #4&5 /
#6&7).

• Receive ActuatorData from the other channel (interface #3) and validate it
against own environment model.

• Send ValidationResults (including hash of validated ActuatorData) to Se-
lectors (interfaces #4&5 / #6&7).

Selector
[1-2]

• Receive ActuatorData from channels (interfaces #4&6 / #5&7).

• Receive ValidationResults from channels (interfaces #4&6 / #5&7).

• Rank ActuatorData based on ValidationResults and send highest-ranked
(separately for nominal trajectory and pre-planned MRM) to Actuator Sys-
tem (interface #8 / #9).

Channel 1 Selector 1

Selector 2Channel 2In
te

rf
a

ce
 to

 S
en

so
r S

ys
te

m

Interface to UI System

UserInput

DiagnosticsData

UserInformation

SystemStatus

ActuatorDataSensorData

SensorControl

Interface to Diagnostics System

In
te

rf
a

ce
 to

 A
ct

ua
to

r S
ys

te
m1 8

92

4

5

4

7

6

5

3

3

7

6

65www.the-autonomous.com

Figure 19: Sequence diagram of the Cross-Checking Pair architecture. The nominal case without faults or functional insufficiencies is shown.

The channels both generate two separate sets of actuator data:

• The nominal trajectory is necessary for performing the use case. It needs to provide com-
fort and react dynamically to other traffic participants. Therefore, the related actuator
data is only valid for a limited amount of time (at most a few seconds). If the other channel
is faulty (according to the SystemStatus), the nominal trajectory becomes degraded and is
restricted to pulling over and coming to a controlled stop. This is preferable over a pre-
planned MRM.

• The pre-planned MRM trajectory is only used if the Selectors cannot find a valid nominal
trajectory and therefore silence the ADI. It only needs to come to a controlled stop, pre-
ferably in the right-most or emergency lane. The related actuator data needs to cover the
entire maneuver (potentially dozens of seconds). A validated pre-planned MRM is buffe-
red in the Actuator System31 and executed when the ADI no longer provides output.

The validation is based on the environment model of the respective channel, providing inde-
pendence from the environment model of the other channel that generated the actuator data.
Several properties can be considered separately in the ranking:

• The correctness of the actuator data is a crucial property that must be validated, i.e., that
the underlying trajectory is free from collisions, can be physically executed, etc. A binary
value can be used to express this, e.g., OK or NOK.

• Further relevant properties are the comfort, speed, and efficiency of the actuator data.
These can be used for ranking trajectories and can be expressed as a continuous score.

The Selectors base their decision on the following scheme (see Figure 20; this is done separa-
tely for nominal and pre-planned MRM trajectories):

• If both nominal trajectories are considered OK by both channels, the one with the better
score is forwarded to the Actuator System.

31 The buffering can occur in different locations. Ideally, this should be independent of the ADI to prevent common causes such as loss of power or
communication. The Actuator System may buffer pre-planned MRM trajectories or simply revert to blind braking along the last known curvature.

Sensor
System Channel 1 Channel 2 Selector 1 Selector 2 Actuator

System

SensorData – C1
(correct)

SensorData – C2
(correct)

ActuatorData – C1
(corr. A / corr. MRMa)

ValidatedData – C2
(OK corr. B / OK corr. MRMb)

ValidatedData – C1
(OK corr. B / OK corr.

MRMa)

ActuatorData – C2
(corr. B / corr. MRMb)

ActuatorData – C2
(corr. B / corr. MRMb)

ActuatorData – C1
(corr. A / corr. MRMa)

ActuatorData – sel.
(corr. A / corr. MRMa)

ActuatorData – sel.
(corr. A / corr. MRMa)

66 www.the-autonomous.com

• If only one nominal trajectory is considered OK by both channels, it is automatically for-
warded, and the Selector informs the Diagnostics System of a potential fault or output in-
sufficiency. The Diagnostics System may then request both channels to switch to degraded
mode (nominal trajectory plans to pull over and come to a controlled stop).

• If none of the nominal trajectories are considered OK by both channels, no nominal trajec-
tory is forwarded. In this case the Actuator System will automatically use an MRM trajecto-
ry, either one that the ADI continues to update or the latest pre-planned (buffered) one.

• If both pre-planned MRM trajectories are considered OK by both channels, the one with
the better score is forwarded to the Actuator System and buffered there.

• If only one pre-planned MRM trajectory is considered OK by both channels, it is automati-
cally forwarded.

• If neither pre-planned MRM trajectory is considered OK by both channels, but at least one
nominal still is, no pre-planned MRM trajectory is forwarded. In this case the Selector in-
forms the Diagnostics System of a potential fault or output insufficiency and the Diagno-
stics System may then request both channels to switch to degraded mode (nominal trajec-
tory plans to pull over and come to a controlled stop).

• Switching back and forth between channels is allowed, e.g., the better-scoring channel
can be in control as long as the steadiness of the trajectory is ensured, e.g., by constrai-
ning switching frequency or the replanning of the next few setpoints.

This is summarized in Table 7, where it is assumed that a channel will only output data that
passes its own validation (e.g., Channel 1 validation result of Channel 1 nominal is “OK”, other-
wise there is no output and Channel 2 validation result of Channel 1 nominal is “NOK“).

Table 7: Decision logic of the Selector subsystem in the Cross-Checking Pair architecture.

Channel 1
nominal

Channel 1
MRM

Channel 2
nominal

Channel 2
MRM Selector subsystem action

“OK” (accor-
ding to both
C1 and C2)

“OK” “OK” “OK” Forward higher-ranked nominal and higher-
ranked pre-planned MRM.

“NOK ”
(“NOK ”
according to
C1 and/or
C2)

“OK” “OK” “OK”
Forward C2 nominal and higher-ranked pre-
planned MRM. Report to Diagnostics System
(send channels to degraded mode).

“OK” “NOK ” “OK” “OK” Forward higher-ranked nominal and C2 pre-
planned MRM.

“OK” “OK” “NOK ” “OK”
Forward C1 nominal and higher-ranked pre-
planned MRM. Report to Diagnostics System
(send channels to degraded mode).

“OK” “OK” “OK” “NOK ” Forward higher-ranked nominal and C1 pre-
planned MRM.

“NOK ” “NOK ” “OK” “OK”
Forward C2 nominal and C2 pre-planned
MRM. Report to Diagnostics System (send
channels to degraded mode).

“NOK ” “OK” “NOK ” “OK”
No output (ADI remains silent and Actuator
System resorts to buffered pre-planned
MRM).

67www.the-autonomous.com

Figure 20: State diagram of the Cross-Checking Pair architecture.

S1 - Nominal
Both channels produce comfort
output. One of the channels in
control.

S2 - Degraded
Remaining channel produces
MRM output. Remaining channel
in control.

Fault in either
channel.

Fault in both channels.
OR
Unresolvable disagreement
between channels.

MRM complete or
Driver take-over.

S3 - Disagreement
Neither channel in control.
Fallback to pre-planned
(buffered) MRM.

S4 - MRC
ADI deactivated.

MRM complete or
Driver take-over.

Channel 1
nominal

Channel 1
MRM

Channel 2
nominal

Channel 2
MRM Selector subsystem action

“NOK ” “OK” “OK” “NOK ”
Forward C2 nominal and C1 pre-planned
MRM. Report to Diagnostics System (send
channels to degraded mode).

“OK” “NOK ” “NOK ” “OK”
Forward C1 nominal and C2 pre-planned
MRM. Report to Diagnostics System (send
channels to degraded mode).

“OK” “NOK ” “OK” “NOK ”
Forward higher-ranked nominal. Report to
Diagnostics System (send channels to degra-
ded mode).

“OK” “OK” “NOK ” “NOK ”
Forward C1 nominal and C1 pre-planned
MRM. Report to Diagnostics System (send
channels to degraded mode).

“NOK ” “NOK ” “NOK ” “OK” No output.

“NOK ” “NOK ” “OK” “NOK ” Forward C2 nominal. Report to Diagnostics
System (send channels to degraded mode).

“NOK ” “OK” “NOK ” “NOK ” No output.

“OK” “NOK ” “NOK ” “NOK ” Forward C1 nominal. Report to Diagnostics
System (send channels to degraded mode).

“NOK ” “NOK ” “NOK ” “NOK ” No output.

68 www.the-autonomous.com

3.4.3 DARUMA ARCHITECTURE
3.4.3.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
The Daruma32 architecture [21] [37] is based on the Doer / Checker basic pattern and has been
evaluated with the public Safety Shell implementation [31] [38]. It uses a scalable approach,
i.e., the number of subsystems can be adapted depending on the use case and the desired
integrity and availability. To facilitate the integration of existing ADAS without major modifica-
tions to functionality33, such subsystems need not be “aware” of the rest of the system.

In the following, we describe a variant of the architecture based on the design pattern descri-
bed in [39, 37] with the following modifications:

• Three complex subsystems are used as a basis. This helps resolve potential disagreements
between subsystems. At a minimum, two complex subsystems would be necessary [40], in
which case the architecture loosely resembles the Cross-Checking Pair architecture (see
section 3.4.2).

• The Selector subsystem is duplicated to ensure fault tolerance.

• The Buffering pattern is used to cover the case where the Daruma subsystem is unavaila-
ble.

3.4.3.2 STRUCTURAL DESCRIPTION
The Daruma architecture relies on cross-validation of the channels, which is performed by a
separate subsystem (see Figure 21). It consists of three complex and three simple subsystems:

• Channels 1-3 all have similar roles: they produce actuator commands and, in addition,
output their internal environment model and a pre-planned MRM. To ensure sufficient in-
dependence, the channels must be diverse. The outputs they produce can vary in their fo-
cus, i.e., at least one must produce nominal (comfort) actuator commands, but the others
may produce degraded or MRM actuator commands.

• The Daruma subsystem performs cross-channel validation by comparing the trajectory
(and possible associated actuator commands) of each channel against all environment
models. It can also consider other diagnostic data. The result of this validation can be
scores expressing the safety, comfort, efficiency, driving continuity, etc. of the respective
trajectory. Based on these scores, the Daruma subsystem creates a ranking of the chan-
nels. In contrast to the Majority Voting architecture, where trajectories that are more simi-
lar to others are preferred, Daruma algorithms prefer the trajectory with the best evaluati-
ons (from all channels). This is intended to leverage channels’ diversity. Two channels
might produce similar trajectories, but still consider the trajectory generated by a third
channel safer. Dynamic factors can also be taken into account.

• Selectors 1-2 have the same role: they collect actuator commands and validation results
and select the actuator commands that have been ranked highest by the Daruma subsys-
tem for execution. If Daruma is silent or found to be faulty by the Diagnostics System, the
Selectors instead send a pre-planned (buffered) MRM to the Actuator System.

33 This is visible in comparison to the Cross-Checking Pair, where the validation functionality is part of the channels themselves. This additional
functionality can necessitate significant modifications of an existing ADAS, e.g., higher HW performance requirements.

32 A Daruma is a traditional Japanese doll that stands for good luck and perseverance, see https://en.wikipedia.org/wiki/Daruma_doll. They are
sometimes manufactured as roly-poly toys that right themselves when pushed over.

69www.the-autonomous.com

Figure 21: Block diagram of the Daruma architecture.

3.4.3.3 BEHAVIORAL DESCRIPTION
Table 9 describes the behavior of each of the subsystems in more detail. The interaction bet-
ween subsystems is described in the sequence diagram in Figure 22.

Table 8: Behavioral description of the subsystems in the Daruma architecture.

Subsystem Behavior

Channel
[1-3]

• Receive SensorData from Sensor System (interface #1 / #2 / #3).

• Generate EnvironmentModel and send it to Daruma subsystem (interface
#5 / #8 / #10).

• Generate ActuatorData (for nominal trajectory and for pre-planned MRM)
and send it to Daruma subsystem (interface #5 / #8 / #10) and Selectors (in-
terfaces #4&6 / #7&9 / #11&12).

Daruma

• Receive EnvironmentModels and ActuatorData34 from channels (interfaces
#5&8&10).

• Validate each ActuatorData against each EnvironmentModel (3x3) to crea-
te ranking.

• Send ValidationResults (including hash of validated ActuatorData) to Se-
lectors (interfaces #13&14).

Selector
[1-2]

• Receive ActuatorData from channels (interfaces #4&7&11 / #6&9&12).

• Receive ValidationResults from Daruma subsystem (interface #13 / #14).

• Based on ValidationResults, select highest-ranked ActuatorData and send
them to Actuator System (interface #15 / #16).

• Buffer highest-ranked pre-planned MRM ActuatorData.

34 The cross-check focuses on the trajectory, not the actuator setpoints.

Channel 1

Channel 2

Selector 1

Daruma

Selector 2Channel 3

In
te

rf
a

ce
 to

 S
en

so
r S

ys
te

m

Interface to UI System

UserInput

DiagnosticsData

UserInformation

SystemStatus

ActuatorDataSensorData

SensorControl

Interface to Diagnostics System

In
te

rf
a

ce
 to

 A
ct

ua
to

r S
ys

te
m

1

2

10

113

4

5

6

10

4

5
13

13

6

11

10
14

14

12

7

88

7

9

9

12

11

70 www.the-autonomous.com

The validation in the Daruma subsystem compares each trajectory against each environment
model, resulting in 3x3 risk scores, and potentially also environment models against each other.
Several properties can be considered separately in the ranking:

• The correctness of the actuator data is a crucial property that must be validated. This pro-
perty includes the absence of collisions, the physical feasibility of the trajectory, etc. and
has priority over all other properties.

• Further relevant properties are the comfort, speed, and efficiency of the actuator data.
Degraded trajectories or MRMs will likely score worse in these properties.

• A comparison of the environmental models, e.g., whether objects are correctly recognized.

• A general preference for one of the channels, e.g., the most advanced and performant.

 The Selectors base their decision on the following scheme:

• Validation data is only considered if the hash of the checked actuator data matches the
corresponding (directly) received actuator data35. If the validation data is not received or
the hash doesn’t match, the related validation results are assumed to be “NOK”.

• Actuator data with a higher ranking as output by the Daruma subsystem (according to
safety, comfort, speed, efficiency, etc.) is preferred. If Daruma considers a channel insuffi-
ciently safe, it marks them (indicated by an asterisk in Figure 44 and Figure 45). If none of
the channels are considered sufficiently safe, the Selectors resort to the buffered pre-plan-
ned MRM. Switching back and forth between channels is allowed but limited in frequency.

Figure 22: Sequence diagram of the Daruma architecture. The nominal case without faults or functional insufficiencies is shown.

Sensor
System Channel 1 Channel 2 Channel 3 Selector 1Daruma Selector 2 Actuator

System

SensorData – C1
(correct)

SensorData – C2
(correct)

SensorData – C3
(correct)

ActuatorData – C1
(corr. A / corr. MRMa)

ActuatorData – C2
(corr. B / corr. MRMb)

ActuatorData – C3
(corr. C / corr.

MRMc)

ValidationResults
(Ch1 > Ch2 > Ch3)

EnvironmentModel – C1
(correct A)

EnvironmentModel – C2
(correct B)

EnvironmentModel –
C3 (correct C)

ActuatorData – sel.
(correct A)

ActuatorData – sel.
(correct A)

35 Although this is not described in the source material, it is a reasonable modification (or implementation consideration) to detect Byzantine faults.

71www.the-autonomous.com

3.5 ASYMMETRIC ARCHITECTURES
3.5.1 CHANNEL-WISE DOER / CHECKER / FALLBACK ARCHITECTURE
This section discusses the architecture proposed by Kopetz [25] [41] [42], which can be conside-
red a specific combination of the Doer / Checker and Active / Hot Stand-By (see section 3.2)
approaches for decomposition with respect to integrity and availability, respectively. We refer
to this architecture as Channel-Wise Doer / Checker / Fallback (C-DCF)36. In this case, the de-
composition is done for entire processing channels. Involved design principles and their re-
spective intentions are:

• Minimizing interactions between the different subsystems (in this case entire processing
channels) is intended to reduce complexity and to prevent emergent behavior (see also
D5: Avoidance of emergent behavior).

• The source material suggests employing a Time-Triggered Architecture (TTA) to reduce
ambiguity between late vs. missing messages and to prevent the formation of mutually in-
consistent time domains. This should be considered an implementation consideration as ti-
ming is generally a safety-related property in systems with safety-related availability.

3.5.1.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
The C-DCF architecture is based on a combination of the Doer / Checker approach (for decom-
position with respect to integrity) and the Active / Hot Stand-By approach (for decomposition
with respect to availability). These are outlined in sections 3.2.1.3 and 3.2.1.5, respectively.

The conceptual architecture of the variant proposed by Kopetz is based on a Time-Triggered
Architecture (TTA), i.e., scheduled task execution and communication across all subsystems.
This simplifies the Doer / Checker and Active / Hot Stand-By decompositions:

• Missing and delayed messages between channels are treated the same way.

• Latencies due to communication between channels and the redundancy management
can be bounded and reduced.

It further requires sufficient independence between channels to prevent common cause faults37:

• Diversity in the HW and SW implementations of the different channels is required (see section 5).

• The source material also proposes to use three disjoint sensor sets as input for each chan-
nel but acknowledges that this can likely not be fully achieved due to cost reasons.

3.5.1.2 STRUCTURAL DESCRIPTION
The proposed conceptual system architecture consists of three complex and two simple subsys-
tems (see Figure 23), namely:

• The Primary Driving System (P) controls the vehicle under nominal conditions, i.e., it is simi-
lar to some SAE L2 systems[25]38. It periodically produces nominal trajectories (e.g., timed
waypoints) and actuator setpoints (e.g., desired acceleration / deceleration and curvature
values for steering, powertrain, and brakes) and transmits these to the Monitoring System
and the Decision System.

• The Monitoring System (M) detects unsafe trajectories produced by the P-System, whether
nominal conditions prevail, and whether the Fallback System is still alive.

37 For complex subsystems (i.e., the Primary Driving, Monitoring, and Fallback System described in the subsequent section) this may necessitate
diverse SW implementations. For sufficiently simple subsystems (i.e., the Decision System) with fully verifiable SW, no diversity is necessary.

36 The source material does not state an explicit name for this architecture. Within this report, it is referred to as Doer / Checker / Fallback due to its
combination of said architectural design patterns. The suffix Channel-Wise is to differentiate it from another DCF architecture.

38 The other subsystems effectively take over the tasks performed by a human driver in an SAE L2 system and are collectively called Safety Assurance
Subsystem in .

72 www.the-autonomous.com

• The Fallback System (F) controls the vehicle under off-nominal conditions. It only aims to
bring the vehicle to a minimal risk condition, i.e., to execute an MRM, but must be able to
do that even after an ODD exit. It periodically produces trajectories and actuator setpoints
and transmits these to the Decision System.

• The Decision System (D) decides which setpoints are forwarded to the Actuator System. It
consists of two identical instances (D1 and D2) to achieve fault tolerance.

A more detailed structural description of the subsystems is given in the source material.

Figure 23: Block diagram of the Channel-Wise Doer / Checker / Fallback architecture.

3.5.1.3 BEHAVIORAL DESCRIPTION
Table 9 describes the behavior of each of the subsystems in more detail. The interaction bet-
ween subsystems is described in the sequence diagram in Figure 24 (showing the time-driven
tasks with the common main cycle time of the AD Intelligence in the fault-free case). Consensus
in the Actuator System (compare S4: AD Intelligence output consistency) is straightforward:
actuators follow the received setpoints with the higher priority, i.e., they prefer L2 setpoints over
F setpoints if they receive both.

SAE L2
(L2)

Monitoring
(M)

Decision 1
(D1)

Decision 2
(D2)

Fallback
(F)

In
te

rf
a

ce
 to

 S
en

so
r S

ys
te

m

Interface to UI System

UserInput

DiagnosticsData

UserInformation

SystemStatus

ActuatorDataSensorData

SensorControl

Interface to Diagnostics System

In
te

rf
a

ce
 to

 A
ct

ua
to

r S
ys

te
m1

2

12

133

4

5

6

4

57

8

9

10

6 10

11

7 11

9

8

73www.the-autonomous.com

Table 9: Behavior of the subsystems of the Channel-Wise Doer / Checker / Fallback architecture.

For all of the AD Intelligence, task execution and communication are based on a time-triggered
schedule. If a message is not received in the planned time slot (or does not have the correct
iteration counter), it counts the same as if it hadn’t been received at all or if it had been recei-
ved in a corrupted state (e.g., with an invalid checksum).

Transient faults in one of the complex subsystems can occur quite frequently, so the D-Systems
allow recovery of the L2-System if necessary39. However, unduly frequent transient faults are
considered indicative of an underlying problem and cause the L2-System to go into a degra-
ded mode (see Figure 25 and G5: Frequent switching).

39 How feasible a switch back to the L2-System is depends on the involved time scales. If the L2-System can be recovered quickly and the F-System
generates degraded trajectories (not MRMs), it may not be very noticeable to the passengers. The source material assumes that many P-System
failures will be transient, e.g., due to a temporary SOTIF violation. In any case, continuous back-and-forth switching must be prevented.

Subsystem Behavior

SAE L2

• Receive SensorData from Sensor System (interface #1).

• Generate ActuatorData (for nominal trajectory) and send it to M-System
(interface #6) and D-Systems (interfaces #4&5).

• Go to degraded mode (MRM only) if system state demands it (interface #6;
e.g., if F-System is faulty).

Fallback
• Receive SensorData from Sensor System (interface #3).

• Generate ActuatorData (for MRM trajectory) and send it to M-System (inter-
face #7) and D-Systems (interfaces #8&9).

Monito-
ring

• Receive SensorData from Sensor System (interface #2).

• Receive ActuatorData from L2-System (interface #6) and F-System (interface
#7).

• Receive ActuatorData from D-Systems (relay on interfaces #10&11).

• Validate ActuatorData from L2-System. This involves checking the received
trajectory / actuator setpoints against the M-System’s environment model.

• Check that ActuatorData from L2-System is same as received from the D-Sys-
tems. This is intended to catch Byzantine failures where the L2-System sends
different outputs to the M-System and the D-Systems.

• Validate ActuatorData from F-System.

• Check that ActuatorData from F-System is same as received from the D-Sys-
tems.

• Send ValidationResult to D-Systems (interfaces #10&11). This determines
which subsystem will be in control of the actuators.

• Send ValidationResults to L2-System (interface #6). If the F-System is faulty, this
will request the L2-System to restrict itself to degraded or MRM trajectories.

Decision
[1-2]

• Forward ActuatorData from L2-System (interface #4 / #5) and F-System (in-
terface #8 / #9) back to M-System (interface #10 / #11). This is intended to
catch Byzantine failures.

• Receive ValidationResults from M-System (interface #10 / #11).

• Select ActuatorData from L2-System or F-System depending on Validation-
Results and send it to Actuator System (interface #12 / #13).

74 www.the-autonomous.com

Figure 24: Sequence diagram of the C-DCF architecture. The nominal case without faults or functional insufficiencies is shown.

Figure 25: State diagram of the C-DCF architecture.

3.5.2 LAYER-WISE DOER / CHECKER / FALLBACK ARCHITECTURE
In [43], a multi-channel approach combined with the Doer / Checker pattern is presented in a
patent as a safety architecture for AD. This section summarizes the most relevant aspects of this
invention, which we refer to as Layer-Wise Doer / Checker / Fallback (L-DCF)40.

S1 - Nominal
L2-System produces comfort
output.
L2-System in control.

S2 - L2-System degraded
L2-System produces MRM output.
L2-System in control.

Fault in ADI subsystem
or adjacent system.

Transient fault in
L2-System resolvedFault in L2-System.

MRM complete.
OR
Driver take-over.

S3 - Fallback active
F-System in control.

S4 - MRC
ADI deactivated.

MRM complete.
OR

Driver take-over

40 The source material does not state an explicit name for this architecture. Within this report, it is referred to as Doer / Checker / Fallback due to its
combination of said architectural design patterns. The suffix Layer-Wise is to differentiate it from another DCF architecture.

Sensor
System L2 M F D2D1 Actuator

System

SensorData – L2
(correct)

SensorData – M
(correct)

SensorData – F
(correct)

ActuatorData – L2
(correct A)

ActuatorData – L2
(correct A)

ActuatorData – F
(correct B)

ActuatorData – F
(correct B)

ActuatorData – sel.
(correct A)

ActuatorData – L2F
(corr. A / corr. B)

ValidationResults – L2
(safe)Degradation

Request
(no)

75www.the-autonomous.com

3.5.2.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
Doer / Checker pairs are used as the main architectural pattern. The primary Doer / Checker
pair acts during normal mode, and a secondary (“safing”) Doer / Checker pair provides a de-
graded mode of operation in case the primary pair fails. Additionally, the arbiter “Priority Se-
lector” determines the output to be sent to the actuators (see Figure 26). The source material
proposes to use two disjoint sensor sets as input for the primary and safing channels.

3.5.2.2 STRUCTURAL DESCRIPTION
The pattern shown in Figure 26 can be repeated for different layers or stages (e.g., perception,
planning, and trajectory execution. It consists of four complex and two simple subsystems, namely:

• The Primary unit (P) controls the vehicle under nominal conditions. Depending on the
layer, this may involve perception, planning, and/or trajectory execution. It may have a
low integrity level and fail arbitrarily.

• The Primary Safety Gate (PSG) complements the Primary to form a Doer / Checker pair. It
checks the outputs of the Primary and silences it if necessary. It is a high-integrity compo-
nent and is fail-silent.

• The Safing unit (S) controls the vehicle if the Primary unit is faulty or not available. Depen-
ding on the layer, this may involve perception, planning, and/or trajectory execution. It
also generates a “Permissive Envelope” signal, which indicates a reference used to valida-
te the Primary output. The Permissive Envelope may, for example, specify a maximum ac-
celeration rate. It needs to be carefully implemented to prevent a single point of failure
where the Primary channel tries to generate a trajectory that lies inside a faulty envelope
while at the same time the Safing channel also generates a faulty trajectory.

• The Safing Safety Gate (SSG) checks the outputs of the Safing and silences it if necessary.
It also evaluates whether the Permissive Envelope is appropriate and whether the Primary
lies within it, and buffers the MRM planned by the Safing unit.

• The Priority Selector (PS) makes the final selection of outputs to pass on to the Actuator
System. It consists of two identical instances (PS1 and PS2) to achieve fault tolerance. The
instances may fail silently but must then trigger an emergency stop using either a buffered
pre-planned MRM trajectory or a “constant braking” (blind braking) maneuver. As it is sim-
pler than the Safety Gates, a great deal of effort can be spent on its verification to achieve
the required high level of integrity.

Figure 26: Block diagram of the Layer-Wise Doer / Checker / Fallback architecture.

Primary
(P)

Primary Safety
Gate (PSG)

Safing Safety
Gate (SSG)

Priority
Selector 1

Priority
Selector 2

Safing
(S)

In
te

rf
a

ce
 to

 S
en

so
r S

ys
te

m

Interface to UI System

UserInput

DiagnosticsData

UserInformation

Optional:
additional layers

SystemStatus

ActuatorDataSensorData

SensorControl

Interface to Diagnostics System

In
te

rf
a

ce
 to

 A
ct

ua
to

r S
ys

te
m1

4

5

10

112

3

8

9

9

8

3

8

7

7

9

6 6

76 www.the-autonomous.com

3.5.2.3 BEHAVIORAL DESCRIPTION
Various implementation alternatives are mentioned in the patent (e.g., time-triggered vs.
event-triggered architecture). Depending on the choice, the system will behave differently. Ta-
ble 10 describes the behavior of each of the subsystems in more detail. The interaction between
subsystems is described in the sequence diagram in Figure 27.

Table 10: Behavioral description of the subsystems in the Layer-Wise Doer / Checker / Fallback architecture.

The two channels each consist of a fail-silent Doer / Checker pair.

• These channels can be stacked in multiple layers. The Primary output of the first layer ser-
ves as input to the Primary of the second layer, whereas the Safing output serves as input
to the Primary Safety Gate, Safing, and Safing Safety Gate of the second layer.

• If both the Primary unit and the Safing unit fail, the system remains safe by recovering ac-
tions performed by the downstream stages (e.g., executing an emergency stop).

The Priority Selectors are fault-tolerant to ensure availability of the system.

Subsystem Behavior

Primary

• Receive primary SensorData from Sensor System (interface #1).

• Depending on the layer, generate perception output, planning output (no-
minal trajectory), or execution output (nominal ActuatorData) and send it
to Primary Safety Gate (interface #3).

Primary
Safety
Gate

• Receive safing SensorData from Sensor System (interface #4).

• Receive output from Primary (interface #3).

• Receive Permissive Envelope from Safing Safety Gate (interface #7).

• Validate output of Primary (including against Permissive Envelope) and only
send valid output to Safing Safety Gate (interface #7) and Priority Selectors
(interface #8).

Safing

• Receive safing SensorData from Sensor System (interface #2).

• Depending on the layer, generate perception output, planning output (pre-
planned MRM), or execution output (pre-planned MRM ActuatorData) and
send it to Safing Safety Gate (interface #6).

• Generate Permissive Envelope and send it to Safing Safety Gate (interface #6).

Safing
Safety
Gate

• Receive primary SensorData from Sensor System (interface #5).

• Receive output from Safing (including Permissive Envelope; interface #7).

• Validate output of Safing and only send valid output to Priority Selectors (in-
terface #9).

• Buffer valid Safing output (pre-planned MRM).

• Validate Permissive Envelope and forward it to Primary Safing Gate (inter-
face #7).

• Validate whether Primary lies within Permissive Envelope.

Priority
Selector
[1-2]

• Receive ActuatorData from Primary Safety Gate (interface #8) and Safing
Safety Gate (interface #9).

• Forward highest-ranked ActuatorData to Actuator System (interface #10 / #11).

• Resort to “constant braking” (blind MRM) command if no valid ActuatorData
available (interface #10 / #11).

77www.the-autonomous.com

• If the Safing Safety Gate for the planning stage fails, both Primary and Safing outputs are
inhibited. The downstream stage gets no inputs, and thus sends no outputs, which causes
the execution of the last safe trajectory.

• If the Safing Safety Gate for the trajectory execution stage fails, both Primary and Safing
output are inhibited, which causes the Priority Selector to execute an emergency stop.

The Safing unit generates pre-planned MRM trajectories, which are buffered in the Safing
Safety Gate and checked for validity in a cyclic (i.e., periodic and deterministic) way. These can
be used as a last resort if neither channel is available.

Figure 27: Sequence diagram of the L-DCF architecture. The nominal case without faults or functional insufficiencies is shown.

3.5.3 DISTRIBUTED SAFETY MECHANISM ARCHITECTURE
This section discusses the Distributed Safety Mechanism (DSM) architecture proposed in [44]
[45]41, which can be considered a distributed variant of the Doer / Checker / Fallback approach.
It has been formally verified in the source material.

3.5.3.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
The DSM architecture is based on separation of concerns and a distributed monitoring ap-
proach. These are intended to enable a highly scalable architecture by allowing the nominal
channel to be extended for more functionality without affecting the rest of the system. Inspired
by the E-GAS layered monitoring concept [46], it includes safety monitoring components at
function, controller, and vehicle levels.

This architecture is based on exactly one subsystem being in control of the Actuator System at
all times:

• All subsystems apart from the controlling one are silenced, i.e., they do not send control
commands to the Actuator System. This is different compared to the C-DCF architecture,

41 An open-access version of this paper is available at https://arxiv.org/ftp/arxiv/papers/2011/2011.00892.pdf

Sensor
System P PSG S PS 1SSG PS 2 Actuator

System

SensorData – P
(primary correct)

SensorData – PSG
(safing correct)

SensorData – S
(safing correct)

SensorData – SSG
(safing correct)

ActuatorData – P
(correct A)

ActuatorData – P
(correct A)

ActuatorData – sel.
(correct A)

ActuatorData – sel.
(correct A)

ActuatorData –S
(correct MRMa)

ActuatorData –S
(correct MRMa)

Envelope
(correct)

Envelope
(correct)

78 www.the-autonomous.com

where a “smart switch” decides which control commands to forward to the Actuator System.

• High reliability and determinism are required by the system-level distributed communicati-
on protocol to support the safety mechanisms.

The source material provides additional details on suggested implementation:
Redundant communication networks (primary and secondary) should be used.
Two disjoint sensor sets should be used as input for the nominal and safety channels (see sour-
ce material for more details).

In the following, we describe a variant of the proposed architecture with the modification that
the SFM subsystem receives sensor data that it can process, not just sensor diagnostics data.

3.5.3.2 STRUCTURAL DESCRIPTION
The DSM architecture consists of four subsystems (see Figure 28):

• The Function channel (FUN) performs the nominal function. It periodically produces tra-
jectories and actuator setpoints and transmits these to the Sensor and Function Safety Mo-
nitor and Actuator System. It also sends diagnostic data to SFM. The DSM architecture fo-
resees the possibility to add additional FUN subsystems in a modular way.

• The Sensor and Function Safety Monitor (SFM) detects faults and functional insufficiencies
in the FUN and in itself and sends diagnostic data to the Controller Safety Mechanism. It
can also suppress the output of the FUN42. As a monitor, its primary concern is the safety
of the AD functions, e.g., from a SOTIF perspective.

• The Controller Safety Mechanism (CSM) can trigger a shutdown of the FUN and/or SFM. It
monitors the Vehicle Safety Mechanism through a watchdog and also compares the FUN
trajectory against an envelope produced by the VSM. As a monitor, its primary concern is
the safety of the function controller (FUN + SFM), e.g., from a HW and platform SW
perspective. As a “last resort” if the VSM is not available, it can generate MRM actuator
setpoints and send these to the Actuator System43.

• The Vehicle Safety Mechanism (VSM) monitors the status of the other subsystems and
sends MRM actuator setpoints to the Actuator System if any of them are not available. It
also generates a checking envelope that the CSM can use to check the FUN trajectory. As
a monitor, its primary concern is the safety of the vehicle, e.g., from a data and power
networks perspective. It is assumed to fail silently.

43 Such a last resort could be constant “blind” braking on the last known curvature. It could also be implemented on the Actuator System side.

42 The source material considers a service-oriented architecture, which is difficult to represent as a conceptual system architecture.

79www.the-autonomous.com

Figure 28: Block diagram of the DSM architecture

3.5.3.3 BEHAVIORAL DESCRIPTION
Table 11 describes the behavior of each of the subsystems in more detail. The interaction bet-
ween subsystems is described in the sequence diagram in Figure 29. The DSM architecture con-
siders a system-wide degradation concept with five system states, i.e., nominal, detour, com-
fort stop, safe stop, or emergency stop. As shown in more detail in Figure 30, the appropriate
degradation depends on which subsystem is faulty.

Table 11: Behavior of the subsystems of the DSM architecture.

Subsystem Behavior

Function

• Receive nominal SensorData from Sensor System (interface #1).

• Generate ActuatorData (usually “nominal” mode; “detour” degraded mode
only when requested by CSM on interface #2) and send it to SFM (interface
#4) and Actuator System (interface #3).

Sensor
and Func-
tion Moni-
tor

• Receive nominal SensorData from Sensor System (interface #8).

• Diagnose FUN (interface #4) and send DiagnosticsData and FUN trajectory
to CSM (interface #5).

• If necessary, suppress FUN output (interface #9).

80 www.the-autonomous.com

As shown in the sequence diagram, several communication paths are not used in the nominal
case, i.e., some subsystem outputs are silenced. Only in certain cases with faults or functional
insufficiencies, i.e., when the FUN subsystem is silenced by the CSM, are these degraded or
emergency options used.

Subsystem Behavior

Controller
Safety
Mecha-
nism

• Receive DiagnosticsData and FUN trajectory from SFM (interface #5).

• Receive VSM envelope (interface #7) and compare to FUN trajectory.

• If FUN is found to be faulty, silence FUN (interface #2).

• If SFM is found to be faulty, silence SFM (interface #5) and request FUN to
go to “detour” degraded mode (interface #2).

• Send DiagnosticsData to VSM (interface #7).

• Initiate watchdog challenge to VSM (interface #7).

• If watchdog challenge to VSM fails, generate ActuatorData (“emergency
stop” blind MRM) and send it to Actuator System (interface #6).

• Reply to watchdog challenge from VSM (interface #7).

Vehicle
Safety
Mecha-
nism

• Receive safety SensorData from Sensor System (interface #10).

• Receive DiagnosticsData from CSM (interface #7).

• Generate checking envelope and send it to CSM (interface #7).

• If FUN or CSM is found to be faulty, generate ActuatorData (“comfort stop”
or “safe stop” MRM) and send it to Actuator System (interface #11).

• Reply to watchdog challenge from CSM (interface #7).

• Initiate watchdog challenge to CSM (interface #7).

81www.the-autonomous.com

Figure 29: Sequence diagram of the DSM architecture. The nominal case without faults or functional insufficiencies is shown.

Depending on the nature of the fault or output insufficiency, the CSM and VSM can use different
levels of degradation (similar to the degradation cascades described in [47]) as shown in Figu-
re 30. If a fault or output insufficiency is detected in FUN or SFM, the corresponding subsystem
is turned off and thus silenced. The CSM can use one of two options:

• If VSM is not available, it uses “detour”, which describes a degraded functionality. The ve-
hicle can reduce risk by continuing at a lower speed but aims to complete the mission
(“limp-home mode”).

• If VSM and FUN or SFM are not available, it uses “emergency stop”, which describes an
MRM. The vehicle brakes blindly, following the last known curvature.

The VSM can use one of the following two options:

• If FUN is not available, it uses “comfort stop”, which describes a degraded trajectory. The
vehicle gracefully pulls over to the right side and comes to a controlled stop.

• If CSM is not available, it uses “safe stop”, which describes an MRM. The vehicle pulls over
to the right side or comes to a stop in-lane.

Sensor
System FUN SFM CSM VSM Actuator

System

SensorData – FUN
(correct)

SensorData – SFM
(correct)

SensorData – VSM
(correct)

ActuatorData – FUN
(correct)

DiagnosticsData –
FUN
(OK)

Envelope
(correct)

ActuatorData – VSM
(none)

ActuatorData – CSM
(none)

ShutoffRequest
(none)

DetourRequest
(none)

ActuatorData – FUN
(correct)

DiagnosticsData –
SFM
(OK)

Supression
(no)

VMStatus
(on)

Watchdog
(challenge)Response

(correct)

Response
(correct)

Watchdog
(challenge)

82 www.the-autonomous.com

Figure 30: State diagram of the DSM architecture.

3.5.4 AD-EYE ARCHITECTURE
3.5.4.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
This architecture was first proposed and described in the following patents [48] [49], and has
since been described in [50], [51] and realization aspects have been described in [52]. The de-
sign has the following underlying principles.

1. Avoiding unnecessary complexity. Introducing multiple complex channels significantly in-
creases system cost, creates additional failure modes, and makes agreement between
channels harder, particularly for SOTIF-related issues. While some complexity is essential
due to the nature of the functional needs, minimizing the accidental[107]44 complexity of
the system is to be strived for.

2. Separation of concerns and structured diversity. The AD-EYE architecture enforces separa-
tion of concerns by assigning distinct objectives to each channel: performance for Channel
1 and robustness for Channel 2. This structured approach results in naturally diverse de-
signs without unnecessary redundancy. The channels apply a Doer-Checker-Fallback pat-
tern, maintaining structural independence between primary operation, monitoring, and
fallback. This separation limits the spread of high ASIL requirements, keeping critical func-
tions verifiable and the Selector subsystem deliberately simple to ease formal validation .

3. Robustness towards transient errors and graceful degradation. A core design principle to
be robust against transient errors, supporting controlled degradation during faults, and
allowing adaptation to different operational contexts without structural redesign.

4. Reuse and Scalability. Variability in feature maturity and performance requirements across
diverse offerings—spanning ODDs, vehicle classes, and feature configurations—is inher-
ent to any OEM portfolio. To consistently address this variability is essential to reduce engi-

44 The terms Accidental and Essential complexity are terms first defined in [107].

S1 - Nominal
Drive to destination in
comfort mode.
FUN in control (main
sensors).

S2 - Detour
Detour to repair shop (limp-
home).
CSM/FUN in control (main
sensors).

S4 - Safe Stop
Pull-over or in-lane stop.
VSM in control (safety
sensors).

VSM fault OR
safety sensor fault

FUN fault OR SFM fault OR ODD
change OR main sensor fault

CSM fault OR
main network fault

FUN fault OR SFM fault OR ODD
change OR main sensor fault

VSM fault OR
safety sensor fault

CSM
fault OR

main
network

fault

MRM
complete
or Driver
take-over

S3 - Comfort Stop
Graceful pull-over (MRM).
VSM in control (safety
sensors).

S5 - Emergency Stop
Brake and maintain curve
(MRM).
CSM in control (no sensors).

S6 - MRC
ADI deactivated.

83www.the-autonomous.com

neering overhead and minimize verification and validation effort, requiring an architec-
ture that is flexible enough to scale to the different offering levels while keeping the es-
sence of the structure unchanged.

3.5.4.2 STRUCTURAL DESCRIPTION

Figure 31: Block diagram of the AD-EYE architecture.

The AD-EYE architecture proposed by KTH comprises two asymmetric channels, Channel 1 and
Channel 2, and a discrete Selector. Both channels produce equivalent outputs with respect to
the Actuator System, but only one channel's output is sent to the actuators at a time. The chan-
nels degrade independently and can independently execute an MRM to reach a Minimal Risk
Condition (MRC). In contrast to some other architectures, such as the C-DCF architecture, AD-
EYE allows for graceful degradation of Channel 1 in case of transient errors and functional in-
sufficiencies, since Channel 2a determines the operational envelope for Channel 1. The internal
redundancy within each subsystem can be adjusted to meet specific operational needs, but
each subsystem fulfills distinct and fixed roles.

• Channel 1 is in control of the AD function by default and sends commands via the Selector
component. It is inherently complex, optimized for performance, and supports graceful de-
gradation and recovery from transient errors, temporary limitations, and other managea-
ble faults, restoring full functionality when conditions permit.

• Channel 2 is minimalistic to simplify validation, reduce computational complexity, and mi-
nimize systematic errors. It maintains an independent simplified perception stack across its
two components and uses deterministic algorithms where possible.

▪ Channel 2a monitors Channel 1 using a simplified environmental model, platform
status, and road network information. It defines and continuously adjusts an
Operational Envelope that constrains Channel 1’s operation based on current system
health. Envelope limits are tightened under degraded conditions, such as perception
faults in Channel 1, to prevent operation in uncertain environments. For most non-
severe faults, Channel 2a does not invalidate Channel 1’s data but constrains its
behavior through envelope adjustments. For other non-severe detected faults
reported from Channel 1, Channel 2a is permitted to change the destination given to
Channel 2, e.g., to a workshop or a stop outside of the highway in addition to the

84 www.the-autonomous.com

Operational Envelope constraints to allow for a limp home mode. In the most
restrictive case, the envelope may force Channel 1 to perform an MRM in the current
lane. Channel 2a may select Channel 2b to execute an MRM only when a severe
internal fault is detected within Channel 1, e.g., something that may compromise the
safety of the trajectory output of Channel 1.

▪ Channel 2b provides a robust fallback, activating if Channel 1 is severely degraded or
is unavailable. It executes MRMs based on precomputed trajectories, which are
continuously revalidated using sensor data from Channel 2’s perception stack over a
limited time horizon.

• The Selector design is deliberately simple, minimizing internal logic to meet high safety re-
quirements cost-effectively. It acts as a multiplexer, and only forwards actuator commands
from the selected channel to the actuator subsystem without additional processing.

3.5.4.3 BEHAVIORAL DESCRIPTION

Table 12: Behavior of Subsystems within the AD-EYE architecture

Figure 33 shows a state machine representation, which is explained in more detail in Table 13.
The sequence of events under nominal operation is shown in Figure 32.

Subsystem Behavior

Channel 1

• Receive nominal SensorData from Sensor System (interface #1).

• Generate nominal ActuatorData and send it to Actuator System via the Se-
lectors (interface #5, #6).

• Expose internal states and ActuatorData from Channel 1 to Channel 2a
and receive constraints to the Operational Envelope of Channel 1 from
Channel 2a. Receive heartbeat from Channel 2a. (interface #3)

Selector
[1-2]

• Gateway nominal ActuatorData to Actuator System (interface #11, #12), un-
less safety ActuatorData is required, based on decision from Channel 2a (in-
terface #7, #8).

Channel
2a

• Monitor the internal states and ActuatorData of Channel 1 and generate
constraints on the Operational Envelope of Channel 1 based on stored data,
safety SensorData. Send heartbeat for the status of Channel 2. (interface #3)

• Receive perception data from Channel 2b. (interface #4)

• Inform the Selectors which ActuatorData, either safety or nominal, is to be
sent on to the Actuator System. (interface #7, #8)

Channel
2b

• Receive safety SensorData from Sensor System (interface #2).

• Send perception data to Channel 2a. (interface #4)

• Generate safety ActuatorData (MRM and pre-planned MRM) and send it to
Actuator System via the Selectors (interface #9,10)

85www.the-autonomous.com

Table 13: Transitions in the state diagram for the AD-EYE architecture.

Degraded modes would be implemented by Channel 1, and their triggering could come from
either Channel 1 or from Channel 2.

Figure 32: Sequence diagram of the AD-EYE architecture. The nominal case without faults or functional insufficiencies is shown.

Sensor
System

Channel
1

Channel
2a

Channel
2b

Selector
2

Selector
1

Actuator
System

SensorData – C2b
(correct)

SensorData – C1
(correct)

Enivronment model
(correct)

Heartbeat
(alive)

Internal states – C1
(OK)

Redundant
trajectory

(trajectory C2)

Selection decision
(select C1)

Selected trajectory
(trajectory C1)

Selected trajectory
(trajectory C1)

Envelope limits
(correct)

Trajectory within
envelope

(trajectory C1)

Transition Causes

1 ”SOTIF” errors, errors in vehicle platform, other errors in Channel 1 etc.

2 No errors detected or transient errors are healed

3
Detection of an irrecoverable error in Channel 1, or when progress to goal can-
not be achieved by Channel 1 due to limitations in environment or limited ope-
rational envelope caused by degradations.

4 Detection of an irrecoverable error in Channel 2

5 Reaching the desired goal, the fallback goal due to degraded conditions, or
the emergency MRC

86 www.the-autonomous.com

Figure 33: State diagram of the AD-EYE architecture.

3.6 RELATED EXAMPLES FROM THE INDUSTRY
3.6.1 AUDI ZFAS
In 2015, Audi gave some insights into their then next-generation HW and SW platform “zentrales
Fahrerassistenzsteuergerät45 (zFAS)” [53], intended to cover more complex ADAS use cases and
a novel SAE L3 Traffic Jam Pilot AD use case46.

Historically, most ADAS were a collection of dedicated ECUs and sensors for every individual
function or use case, e.g., Adaptive Cruise Control (ACC), Light Assistant, Parking Assistant, Top
View, etc. As more such systems were added to vehicles, cost and complexity scaled poorly and
the performance of the functions provided remained limited, since fusing the information from
the distributed sensors proved to be difficult.

Starting around 2015, the leading players in the automotive industry started working on more
centralized platforms that decoupled specific sensors from specific ADAS functions by introdu-
cing a centralized sensor data fusion layer in-between, with the intention to gain several bene-
fits:

• Multiple control units could be integrated into one unit and their HW resources shared.

• A more modular architecture (due to decoupling SW from HW) could allow updating
functions or deploying additional ones over the lifetime of the vehicle.

• The central environment model could reduce redundancies and make consistent informa-
tion available to many applications.

46 This use case was intended to support hands-off / feet-off / eyes-off driving in traffic jam scenarios (up to 60 km/h) on highways. In case of a
failure of the system, the driver was supposed to take over within ~10 seconds.

45 German for “Central Driver Assistance Controller”.

S1 - Normal Operation
Channel 1 is in control.

S2 - Degraded Mode
Operational envelope
limitation / changed goal.
Channel 1 is in control.

S3 – Degraded Mode MRM
Execution
Channel 1 is in control.

Transient faults (1)

Permanent fault in
Channel 1 (3)

Recovery (2)

Permanent fault in
Channel 2 (4)

MRM
complete

(5)

MRM complete (5)

S4 - Degraded Mode MRM
Execution
Channel 2 is in control.

S5 - MRC or goal
ADI deactivated.

87www.the-autonomous.com

• Improved recognition of the vehicle’s surroundings and a more detailed environment mo-
del gained through multi-sensor data fusion could support more complex SAE L2 (ADAS)
use cases and even novel SAE L3 use cases.

At the time, developing an integrated HW and SW platform (see Figure 34) capable of hosting
a large number of applications with widely varying computational needs (e.g., FPGA or GPU)
was challenging. Table 14 shows an overview of the different HW components in the Audi zFAS
system and the hosted functions.

Figure 34: ADAS domain controller ECU in the Audi zFAS platform [54].

Table 14: HW components in the Audi zFAS platform [55].

Automotive-qualified embedded microcontroller
• Various functions (up to ASIL D)

• Interface to the rest of the vehicle

FPGA
• Sensor fusion

• Sensor processing

Image processing SoC
• Image processing

• Computer vision

• Driver monitoring

Front camera image processing SoC
• Computer vision

• Emergency braking

88 www.the-autonomous.com

From a conceptual architecture perspective, the zFAS architecture can be considered a Single-
Channel architecture (see section 3.3.1). For the initial underlying use case of a Traffic Jam Pilot
(low speed and a restrained environment), the safety requirements are assumedly different
from most AD use cases with respect to integrity (i.e., complex functionality likely does not need
to reach the highest ASIL) and availability (i.e., the system likely does not need to provide
complex fallback functionality in case of a fault).

3.6.2 TESLA FULL SELF-DRIVING SYSTEM
Tesla’s “Full Self Driving” (FSD) seems to be a more recent implementation of a Single-Channel
architecture. Despite the suggestive label and marketing as a highly autonomous system, FSD
and its precursors “Autopilot” and “Enhanced Autopilot” are formally sold as SAE L2 systems,
where the driver needs to supervise and be ready to take control of the vehicle at any time.
While the Autopilot function is meant as a (semi-)autonomous highway driving system, the FSD
system aims to include urban roads. Technical information is made available by Tesla in the
course of yearly “AI Days”, e.g., [56] and shows in considerable detail that the system is (at the
time of writing) purely camera-based and composed of multiple complex machine learning
modules that are specialized in various elements of the world model (objects, lanes, …). A sin-
gle, common planning module on top is responsible for computing the actual vehicle trajectory
and controlling the vehicle motion. There is no mention of any functionally redundant blocks like
supervision, or of fault-tolerance mechanisms like comparisons or voting on the SW architecture
level.

With the introduction of the so-called “HW3” generation of the central driving computer, Tesla
deployed the core SOC twice, in a parallel redundant fashion, stating that if either one were to
fail, the redundant component would take over. It remains unclear, however, if that redundancy
is exploited on a functional and logical architecture level – quite likely the same Single-Channel
FSD stack is essentially intended to be deployed twice, and the redundant SOC is meant to just
address random hardware faults in the underlying electronic components, like core SOC failu-
res and power supply outages, but not functional deficiencies or systematic implementation
faults. Therefore, the architecture may still be considered as monolithic single channel logically.
Unconfirmed information [57] states that redundancy in HW3 has ultimately been dismissed in
favor of using the second SOC to instead increase computational performance.

3.6.3 BMW SCALABLE AV PLATFORM ARCHITECTURE
In 2020, BMW unveiled some details on their (at the time) planned scalable AV platform archi-
tecture [58] [59], intended for SAE L3 AD features such as a Highway Pilot system similar to the
one outlined in section 1.1. The published materials include an overview of the (at the time)
planned HW architectures for different offering levels for the then-planned SOP 2021 (see Figu-
re 35), as well as a conceptual system architecture for the SAE L3 system, dubbed hPAD (see
Figure 36).

Based on the structural description in these materials, the conceptual architecture proposed by
BMW shares similarities with the Channel-Wise Doer / Checker / Fallback architecture. Going by
the depicted subsystems and high-level functional blocks, the “MAIN” channel appears similar
to the “Primary Driving System”, the “SAFE” channel similar to the “Monitoring System”, and the
“SAFE fail-degraded” channel similar to the “Fallback System”. However, the “SAFE” channel
also seems to produce trajectories and some cross-checking between “MAIN” and “SAFE” ap-
pears to occur. This is similar to the Cross-Checking Pair architecture.

As the published behavioral description is incomplete, we decided not to include this candida-
te conceptual system architecture in our evaluation. This avoids proceeding based on specula-
tion and assumption.

89www.the-autonomous.com

Figure 35: (At the time) planned HW architectures for different offering levels as proposed by BMW [59].

Figure 36: Conceptual architecture proposed by BMW for an SAE L3 system [58].

3.6.4 MOBILEYE SAFETY ARCHITECTURE AND TRUE REDUNDANCY
In 2024, Mobileye revealed more details about their architecture for self-driving cars [60]. Pre-
viously, Mobileye had proposed a high-level design [61] wherein each channel was based on
a different sensor modality. This was intended to facilitate sufficient independence between
channels (dubbed “True Redundancy”). In addition, Mobileye proposed Responsibility Sensiti-
ve Safety (RSS), a concept for checking the output of a (potentially AI-based) channel based
on kinematic rules [62].

This architecture is based on the Primary / Guardian / Fallback pattern, equivalent to Doer /
Checker / Fallback. Similar to the C-DCF architecture, it consists of three main channels:

90 www.the-autonomous.com

• The Primary channel performs the nominal functionality. It consists of a compound AI sys-
tem with perception blocks (for each sensor modality) and a policy block.

• The Guardian channel checks the Primary’s outputs. It consists of independent RSS blocks
for each sensor modality and Checker blocks for other functionalities, e.g., lane semantics
or traffic lights.

• The Fallback channel performs the degraded functionality. It consists of an end-to-end AI
system.

There are a few differences to the C-DCF architecture:

• The Primary and Guardian channels appear to share the same sensor-specific perception
blocks, whereas in other architectures subsystems may share sensors, but not parts of the
perception layer. The True Redundancy concept could be considered a potential practical
solution to ensuring sufficient independence between the subsystems from a sensor
perspective. At least for “physical obstacles” (to distinguish from lanes and traffic lights),
the Guardian uses an independent RSS block per sensor modality and votes on the final
“safe / unsafe” outcome.

• If the Guardian considers the Primary unsafe, it switches to the Fallback. If it also considers
the Fallback unsafe, it additionally enforces MRM braking.

3.6.5 MERCEDES DRIVE PILOT
The Mercedes DRIVE PILOT system represents the first commercially available SAE Level 3
Traffic Jam Pilot (TJP) and is certified in Germany and some US states. It comes with strict ope-
rational limitations: activation is only permitted on highways when a lead vehicle is present
and the speed is below 60 km/h. Mercedes is gradually expanding the operational design
domain (ODD), e.g., the speed limit in Germany has recently been extended to 90 km/h, but
the system remains focused on controlled highway environments with clear restrictions on
speed and lane usage.

From an architectural perspective, publicly available information on DRIVE PILOT’s internal
redundancy management is limited. However, conference presentations [63] and technical
disclosures indicate that the system employs a combination of redundant sensors and actua-
tors, as well as a central AD ECU responsible for trajectory planning, including MRMs in case
of faults or ODD violations. This is likely intended to ensure that the system can bring the vehic-
le to a safe stop even when a sensor, processing element, or actuator fails. Given that only a
single central ECU is mentioned, this might involve executing a pre-planned MRM or similar.

91www.the-autonomous.com

4 ARCHITECTURE
EVALUATION
4.1 EVALUATION PROCESS

Section 3 presented architectures that strive to be practical solutions to the question of how,
conceptually, an automated driving architecture should be designed. The architectures are not
limited to a specific use case of automated driving, and for the most part they do not explicitly
target a specific design criterion, like those described in section 2, although without doubt the
safety and availability of the ADI was a key consideration in the design of most candidate ar-
chitectures.

In this section we seek to describe the merits or potential drawbacks each architecture might
show with respect to the evaluation criteria. To form an unbiased basis for the evaluation, we
first start with a generic evaluation of each architecture in section 4.2, by listing a number of
observations related to each criterion, i.e., properties of each architecture perceived by the
Safety and Architecture Working Group team and (if not obvious) their significance for the spe-
cific criterion.

As the second step, we give the concrete evaluation of the architectures under the defined re-
ference use case of an SAE L4 Highway Pilot function in section 1.1. To this end, we evaluate the
significance of each criterion for that use case – as some will be must-haves for the conceptual
architecture, while others might be of lesser significance or merely nice to have. Next, we di-
rectly compare the architectures, considering the observed properties from the generic evalu-
ation and inferring merits or weaknesses with respect to each evaluation criterion, and finally
ranking them under the criterion.

While some findings may be of principle nature and not easy to overcome, for others the con-
ceptual nature of the architectures and the high level of their descriptions may leave room to
define countermeasures against weaknesses in a further, more detailed design step. Also, de-
pending on the particular use case and environment, the relative significance of the evaluation
criteria may change, and criteria might be modified and/or added. It is therefore important to
emphasize that the evaluation that we provide is not intended as an absolute and final judge-
ment. Rather, it may be understood as a blueprint for the readers of this report for how to ana-
lyze an architecture, identify deficiencies, and derive improvement measures in a systematic
way.

4.2 GENERIC EVALUATION
The generic evaluation of each proposed candidate conceptual system architecture with re-
spect to the defined architecture evaluation criteria relies on tables and diagrams explained
below, to allow for better comparison later on:

• Figure 37 explains how to read the tables discussing all cases where one or two subsys-
tems encounter a fault or output insufficiency.

• Figure 38 explains how to read the sequence diagrams illustrating different failure scena-
rios.

92 www.the-autonomous.com

a. Diagonal elements indicate scenarios where only a single subsystem encounters a fault or
functional insufficiency. The field is marked green if at least a dynamic/reactive MRM can
be provided, orange if at least blind braking, and red if unsafe. Shown example: scenario
where subsystem A is fail-silent.

b. The failure mode of each subsystem is indicated with either fail-silent (s) or fail-arbitrary
(a). Some simple subsystems can be constrained to fail-silent failure modes.

c. Some combinations are not applicable (colored white). Scenarios below the diagonal are
mirrored and not filled out (colored white).

d. Off-diagonal elements indicate scenarios where two subsystem encounter faults or functi-
onal insufficiencies. Covering such dual-point faults is "nice to have": the field is marked
light green if at least a blind MRM can be provided and light red if unsafe. Shown exam-
ple: scenario where subsystem A is fail-arbitrary and subsystem C is fail-silent.

Figure 37: Explanation of the failure scenario tables used in the generic evaluation.

A (s) A (a) B (s) B (a) C (s)

A (s) OK n/a OK OK OK

A (a) OK OK OK Unsafe

B (s) OK n/a OK

B (a) Blind
braking Unsafe

C (s) OK

a

c

c

d

b

93www.the-autonomous.com

a. Sequence diagrams in the architecture evaluation mostly show scenarios with faults (indi-
cated by a lightning bolt) or functional insufficiencies (indicated by a triangle with arrow
pointing down).

b. The transmission of faulty outputs between subsystems is highlighted in yellow.

c. If faulty outputs can be contained by other subsystems, e.g., via checking, this is highligh-
ted in green.

d. Unsafe outputs that reach the ADI boundary are highlighted in orange and indicated by a
triangle with an exclamation mark.

Figure 38: Explanation of the failure scenario sequence diagrams used in the generic evaluation.

94 www.the-autonomous.com

4.2.1 EVALUATION OF THE SINGLE-CHANNEL ARCHITECTURE
4.2.1.1 AVAILABILITY

Table 15: Possible fault / output insufficiency scenarios for the Single-Channel architecture, considering silent
(s) and arbitrary (a) failure modes. Diagonal elements: single-point faults (“OK” marks an MRM or better). Off-
diagonal elements: dual-point faults (“OK” marks blind braking or better).

Figure 39: Sequence diagram of the Single-Channel architecture. Two cases with a fault or output insufficiency (detected by the single channel in
the left panel; undetected in the right panel) are shown. Unsafe messages are highlighted in yellow.

C (s) C (a)

C (s) Unavailable
(unsafe) n/a

C (a) Incorrect
(unsafe)

Sensor
System

Sensor
SystemChannel ChannelActuator

System
Actuator

System

! !

SensorData
(correct)

SensorData
(correct)

ActuatorData
(none)

ActuatorData
(unsafe)

Diagnostics scheme

This architecture does not use a diagnostics scheme. If a fault is detected in the single
subsystem, it remains fail-silent.

• There are no other subsystems to inform.

• There are no degradation measures triggered upon the detection of faults.

Availability of the system

This is a monolithic architecture. Its ability to provide the DDT under nominal or failure condi-
tions depends on the availability of a single FCU with interfaces identical to those of the ADI.

• As shown in Figure 39 and Table 15, a single fault or output insufficiency leads to imme-
diate unavailability of the ADI (if it is detected and the ADI goes fail-silent) or unsafe
output (if it is not detected). To mitigate (but not eliminate) the vulnerability to single-
point faults, redundancy measures within the single subsystem could be attempted.

• Dual- or multi-point faults are not addressed by this architecture.

95www.the-autonomous.com

4.2.1.2 NOMINAL FUNCTIONALITY

4.2.1.3 CYBERSECURITY

Interactions with external systems

Communication with external systems can be expected.
• The single channel needs to communicate with external systems.

• The single channel will likely need constant connectivity to access HD maps or similar. It
will also require regular updates, which implies OTA. This makes the usage of additio-
nal, potentially more secure, update mechanisms (e.g., in the workshop vs. OTA) less
feasible.

• Compromising the single channel allows for full control over the entire ADI.

Interactions between subsystems

This is a monolithic architecture, i.e., the correctness and availability of the entire DDT de-
pends on a single channel. If this channel is compromised, the entire DDT is jeopardized.

• There are no interfaces between subsystems.

• There are no subsystems to exchange data with.

• There are no interactions between subsystems.

Degradation scheme

This architecture does not use a degradation scheme. If a fault is detected in the single
subsystem, it remains fail-silent.

• Any error in the ADI will immediately negatively impact the system functionality.

• No degradation is possible, i.e., no complex fallback functionality (MRM) is provided.
No standby fallback system exists.

Availability of nominal function

A single trajectory is generated from a single world model.
• This architecture only relies on self-diagnostics, i.e., there are no other mechanisms that

could lead to “false positives”. Considering the smaller HW and SW footprint, its base
failure rate (without compensation due to redundancy) may also be lower. The absence
of a redundant subsystem cross-checking the outputs makes this architecture prone to
false negatives; functional insufficiencies also cannot be compensated for. The lack of
fallback puts pressure on the complex functionality to reach the highest possible ASIL,
which is very hard to achieve for a monolithic system (see also G1: Design faults in large
and complex monolithic systems).

• Without redundancy or fallback options, any fault or output insufficiency will be imme-
diately noticeable and/or potentially unsafe.

• There is no arbitration in this architecture.

• The decision logic of the single channel is very simple.

96 www.the-autonomous.com

4.2.1.4 SCALABILITY

4.2.1.5 SIMPLICITY

Complexity of validation

This is a monolithic architecture without clearly separated subsystems to validate and ve-
rify independently.

• The single channel can only be validated as a whole. As this is a very complex subsystem,
efforts for review, testing, and analysis could be higher than for a partitioned system.

• No independent validation of different subsystems is necessary. It is also not necessary
to perform integration verification.

• There are no other subsystems to investigate for correlated or common cause failures.

Number, complexity, and performance of subsystems

Superficially, this architecture appears simple, but the implementation complexity could
be significant.

• There is only a single channel in this architecture.

• The single channel can be very complex. If it also needs to reach the highest possible
ASIL to ensure correctness, its development costs could be very high.

• The single channel has high performance requirements.

Scalability towards differing offering levels

This architecture does not support re-using existing subsystems.
• This single channel could be partially reused for more complex AD architectures, e.g.,

as a fallback channel. Existing Single-Channel ADAS could, without architectural chan-
ges, not be turned into an ADI.

• This architecture is not partitioned into subsystems that might be used as scalable options.

Required level of diversity

This is a monolithic architecture without clearly separated subsystems.
• There are no other channels. However, the internal structure of the single channel may

need to be more complex and may involve internal redundancy and diversity, which
would actually be one of the other architectures “hidden” inside the single channel.

• There are no other subsystems to integrate or develop independently.

Scalability towards higher availability

This architecture does not consider scalability.
• The only way to improve the correctness and/or availability of the ADI is to improve the

single channel. This is limited by G1: Design faults in large and complex monolithic sys-
tems and G2: Single-event upsets in non-redundant HW.

• No subsystems can be added to this architecture.

97www.the-autonomous.com

4.2.1.6 SAFETY OF THE INTENDED FUNCTIONALITY

Support to manage operational conditions

In a monolithic architecture, all responsibilities regarding operational conditions lie with the
single channel.

• The single channel providing the functionality must also monitor the ODD.

• It is assumed that the ODD monitoring is part of the single channel. If it fails, a pre-de-
fined MRM must be used, which may be inadequate for the operational conditions. As
this MRM would be generated by the same single channel, no independence would be
gained.

• No architectural support for monitoring safety performance is provided by this architec-
ture.

Support to accommodate functional insufficiencies

In a monolithic architecture, there are no other subsystems to compensate for functional in-
sufficiencies of the single channel.

• A single channel that shall address all SOTIF requirements appears to be impractical
for SAE L4 systems unless the ODD is very restricted. To reach the very high integrity re-
quirements and ensure correctness, it may require more analysis and testing efforts, in-
dependently of the use case because of its internal complexity compared to other archi-
tectures.

• There are no other subsystems that could employ diverse algorithms or functionality,
particularly to compensate for AI/ML weaknesses.

• The single channel may use several sensor modalities. Depending on the type of failure
and the FCU design, a fallback trajectory may or may not be available. Such a fallback
trajectory could be derived from the last nominal one or be predefined.

98 www.the-autonomous.com

4.2.2 EVALUATION OF THE MAJORITY VOTING ARCHITECTURE
4.2.2.1 AVAILABILITY

Availability of the system

The Majority Voting architecture might struggle to provide the high availability necessary
for AD. While homogeneous redundancy (i.e., identical channels) is susceptible to com-
mon cause faults and functional insufficiencies, heterogeneous redundancy (i.e., diverse
channels) will have to implement inexact voting. If the outputs of the channels differ too
much, which can happen even in the nominal case, the lack of agreement forces the ADI
to select one (potentially deficient) channel or to go silent.

• This architecture can maintain integrity and availability in the presence of a single fault
or output insufficiency, but only if at least two channels work properly and agree on the
course of action (see Figure 41). Figure 41 and Table 16 show that for heterogeneous
channels a single fault or output insufficiency can lead to disagreement. Depending on
the implementation, this leads to either no output (no availability), preferring one of the
remaining channels (potentially unsafe), or resorting to a buffered MRM.

• Common cause faults in the channels need to be avoided. This makes diversity bet-
ween the channels crucial, complicating the voting by necessitating the implementation
of inexact voting. Developing three diverse channels providing similar (nominal) functio-
nality may be very challenging. Systematic faults in the Voters need to be avoided. This
should be accomplishable as these are relatively simple. For homogeneous channels,
systematic faults pose a major problem, i.e., all channels may continue operating but
produce incorrect output.

• If the inexact voting does not lead to a majority, e.g., because the channels propose
fundamentally different courses of action like evading to the left vs. to the right, the ADI
remains silent (see Figure 41). This is not a safe state. A failure of one of the Voters is
safe, though.

99www.the-autonomous.com

Table 16: Possible fault / output insufficiency scenarios for the Majority Voting architecture, considering silent
(s) and arbitrary (a) failure modes. Diagonal elements: single-point faults (“OK” marks an MRM or better). Off-
diagonal elements: dual-point faults (“OK” marks blind braking or better). For space reasons, (*) indicates
“remaining channels may disagree, leading to either silence (unsafe), the preference of a channel (potentially
unsafe), or a pre-planned MRM”, and (**) indicates “no majority, leading to either silence (unsafe), the
preference of a channel (potentially unsafe), or a pre-planned MRM”.

Figure 40: Sequence diagram of the Majority Voting architecture. The case without faults or functional insufficiencies, but disagreement between
the channels is shown. Unsafe messages are highlighted in orange.

C1 (s) C1 (a) C2 (s) C2 (a) C3 (s) C3 (a) V1 (s) V2 (s)

C1 (s)

Remaining
channels
may disa-
gree (MRM
or unsafe) (*)

n/a OK

No ma-
jority
(MRM or
unsafe)
(**)

OK (**) (*) (*)

C1 (a) (*) (**) Incorrect
(unsafe) (**) Incorrect

(unsafe) (*) (*)

C2 (s) (*) n/a OK (**) (*) (*)

C2 (a) (*) (**) Incorrect
(unsafe) (*) (*)

C3 (s) (*) n/a (*) (*)

C3 (a) (*) (*) (*)

V1 (s) (*)
Una-
vailable
(unsafe)

V2 (s) (*)

100 www.the-autonomous.com

Figure 41: Sequence diagram of the Majority Voting architecture. The case with a fault or output insufficiency in Channel 1 is shown. Faulty
messages are highlighted in yellow, fault containment in green.

Degradation scheme

This architecture does not employ a degradation scheme. Instead, all three channels pro-
vide the nominal functionality.

• A single error in the system is not immediately noticeable to the end user. For heteroge-
neous channels, disagreements between the channels, e.g., if they propose fundamen-
tally different courses of action (e.g., brake, steer left, steer right), need to be carefully
considered. The Voter may then either switch to a fail-silent state, raise a flag to the
Diagnostics System, or choose an output based on a pre-defined policy (e.g., prefer
one of the channels or resort to a buffered or fixed MRM trajectory). Similar strategies
can also be employed for homogeneous channels if no majority can be found.

• This architecture does not foresee any levels of degradation. The Voter may, depending
on the implementation, consider different options if no majority can be found, though
this is not degradation of the channels.

Diagnostics scheme

This architecture does not employ a diagnostics scheme.
• The different subsystems are not aware of each other’s condition.

• The different subsystems do not adapt their behavior based on faults elsewhere in the
system.

101www.the-autonomous.com

4.2.2.2 NOMINAL FUNCTIONALITY

4.2.2.3 CYBERSECURITY

Interactions between subsystems

The complex subsystems do not interact directly. This can make it harder to corrupt multi-
ple channels after an attack on one of them, i.e., a security incident can only occur if there
are multiple attacks on different channels. For homogeneous channels, the same vulnera-
bility could be exploited for such an attack.

• The three complex subsystems do not directly interact with each other. Communication
with the two simple Voter subsystems is unidirectional. The Voters are simple and relia-
ble, thus assumed to be harder to attack.

• Only small data structures, i.e., trajectories and/or actuator control commands, are ex-
changed.

• The interfaces between subsystems are well defined and can be restricted.

Availability of nominal functionality

Majority Voting generally works best if there is a straightforward definition of “same or suf-
ficiently similar output”. This is simple for binary output but gets complicated for trajecto-
ries, which can vary both fundamentally (e.g., turn left, turn right, or continue straight
ahead) and gradually (e.g., 100 km/h vs. 101 km/h)47.

• Even with inexact voting, disagreements between three diverse channels can be com-
mon48 and the architecture is sensitive to these. Even in structured traffic, e.g., highway
driving, many different maneuvers are possible in any given situation, i.e., there is no
obvious best or correct solution.

• Frequent disengagements due to disagreement between the three diverse channels
could lead to nuisances and even unsafe situations.

• While majority voting on simple outputs is straight-forward, inexact voting on more
complex outputs like trajectories or actuator control commands is not. These data struc-
tures have at least 2 spatial and a temporal dimension, making the definition of similari-
ty between them non-trivial.

• The main complication lies in defining the similarity between outputs and the involved
thresholds, i.e., “how similar is similar enough?”. Once such a decision has been made
(binary “similar” vs. “non-similar”), the arbitration algorithm is simple: an output that is
similar to both other outputs is preferred over an output that is only similar to one other
output. If no two outputs are similar, the ADI remains silent.

48 Even identical replicas can produce different outputs due to minute timing differences. This is known as replica indeterminism. Periodically
produced outputs can best be compared if all channels use the same cycle time, but even in this case small drifts can easily lead to inconsistencies.

47 As mentioned earlier, voting patterns can still be useful on a lower level if decisions are binary, e.g., voting on the existence of an object based
on sensor modalities.

102 www.the-autonomous.com

4.2.2.4 SCALABILITY

Scalability towards higher availability

The Majority Voting architecture is scalable in a straightforward way. The Voters can be
modified easily to accommodate additional channels in the voting policy.

• More channels could be added to improve availability of the system. However, in case
of heterogeneous (diverse) channels this also increases the likelihood of disagreements
between channels, which is detrimental to availability.

• If this architecture is based on diverse channels providing the nominal functionality, ad-
ding more channels not only increases production cost (another high-performance chip
or ECU) but also significantly increases development cost (another diverse channel).

• Adding more channels is most useful. Additional Voters could also be added, but this is
of limited use.

Scalability towards different offering levels

This architecture could largely be based on existing systems. However, it may be challen-
ging and expensive to provide several equally capable systems to use as channels and
adapt them for inexact voting, especially so as diverse implementations will likely be re-
quired.

• An existing ADAS could be re-used as one of the channels.

• The Voters would need to be newly developed for the ADI.

Interactions with external systems

While all subsystems in this architecture will need updates, the subsystems are relatively
loosely coupled. This could allow the use of different and potentially more secure update
mechanisms, making it harder to compromise the ADI with a single attack.

• As all three complex subsystems provide the nominal functionality, they will require
communication with off-board systems.

• At least one of the three channels will likely need constant connectivity to access HD
maps or similar.

• All three channels will likely require regular updates, though not necessarily at the same
time due to their loose coupling. This implies OTA and thus a larger attack surface for
gaining remote access to the system. The Voters may only need to be updated rarely
and could use a more secure update mechanism, though this depends on how robust
inexact voting is, i.e., if it needs adjustments over time.

103www.the-autonomous.com

4.2.2.5 SIMPLICITY

Required level of diversity

This architecture will likely require diversity between very complex subsystems (the chan-
nels to be voted on) to avoid common cause faults. For homogeneous channels, no diver-
sity is necessary.

• Due to their similar functionality, it may be challenging to find diverse approaches.

• All channels shall provide the nominal functionality, which might make it hard to find
different and equally capable suppliers.

Only the Voters are relatively simple and can likely be implemented with the highest inte-
grity levels to avoid systematic faults.

Number, complexity, and performance of subsystems

The Majority Voting architecture consists of a small number of subsystems. However, three
of these are complex and will have high performance requirements. It may also be difficult
to develop a suitable voting policy for heterogeneous channels.

• This architecture consists of five subsystems.

• The three channels will likely involve ML/AI, with associated high performance require-
ments and HW cost. These channels run in parallel and have no dependency on each
other. The functionality of each channel can be modified separately.

• For homogeneous channels, the development cost is comparable to the Single-Channel
architecture. For heterogeneous channels, which are likely needed to prevent common
cause faults, it scales with the number of channels.

• The two Voters are simple and can be implemented with high integrity. They only add a
small delay to the end-to-end response time from reading the input signal to sending
the output signal. Developing a sound voting policy to address the problems mentioned
earlier can be challenging.

Complexity of validation

Validation of the Majority Voting architecture is complicated due to its symmetry, i.e., cor-
related faults or correlated functional insufficiencies in two or more channels are immedi-
ately relevant.

• The three channels can be validated independently as they have no direct interactions.
However, validation of the voting itself can be non-trivial.

• Under the assumption that channels are independent, the validation target (in terms of
residual fault probability) can be lowered significantly for each channel.

• Proving that the channels are independent may require very high efforts as it involves
all three channels (with the same role) simultaneously.

104 www.the-autonomous.com

4.2.2.6 SAFETY OF THE INTENDED FUNCTIONALITY

Support to manage operational conditions

This architecture does not define specific ways to handle the ODD in a centralized way. It has
very limited capability to react to changing operational conditions and could have difficul-
ties handling operational modes other than the nominal one.

• Each channel has to monitor the ODD separately. No central mechanism for deciding
the reaction to an ODD exit or similar is foreseen.

• When an output insufficiency occurs, one of the other channels takes over control of the
vehicle. As all channels are capable of providing the nominal functionality, this is appli-
cable for the entire foreseen ODD. However, the channels are not aware of each other’s
condition and can only adapt to a limited degree to degraded conditions.

• No specific way for monitoring safety performance is defined for this architecture. Moni-
toring the rate of disagreements could be useful.

Support to accommodate functional insufficiencies

Diverse channels can compensate for each other’s functional insufficiencies. However, disa-
greements between channels remain hard to resolve.

• An output insufficiency in one channel can be compensated for by the other two chan-
nels if these are sufficiently independent. For most ODDs, multiple acceptable solutions
to trajectory planning and actuator setpoint generation exist. This can lead to disagree-
ments between diverse channels.

• The diversity of the three channels should provide some robustness to functional insuf-
ficiencies.

• No specific strategy for defining independent sensor sets composed of different sensor
modalities is defined for this architecture. If sensors are shared between the channels,
which can be expected due to cost reasons, their independence can be compromised.
Additional analysis and rationales will be needed to argue that independence is main-
tained.

105www.the-autonomous.com

4.2.3 EVALUATION OF THE CROSS-CHECKING PAIR ARCHITECTURE
4.2.3.1 AVAILABILITY

Table 17: Possible fault / output insufficiency scenarios for the Cross-Checking Pair architecture, considering
silent (s) and arbitrary (a) failure modes. Diagonal elements: single-point faults (“OK” marks an MRM or
better). Off-diagonal elements: dual-point faults (“OK” marks blind braking or better).

C1 (s) C1 (a) C2 (s) C2 (a) S1 (s) S2 (s)

C1 (s) OK n/a OK Incorrect
(unsafe) OK OK

C1 (a) Blind
braking

Incorrect
(unsafe)

Incorrect
(unsafe) OK OK

C2 (s) OK n/a OK OK

C2 (a) Blind
braking OK OK

S1 (s) OK OK

S2 (s) OK

Availability of the system

The CCP architecture is only robust with respect to failure modes of the planning layer49.
In the general case, however, a single fault or output insufficiency can silence the ADI,
leading to a pre-planned MRM, which may be inadequate for high-speed AD use cases.

• In the presence of a single fault, this architecture remains available to a limited degree
(see Table 17). If a fault or functional insufficiency “only” leads to an unsafe trajectory or
actuator setpoint output (see Figure 42) of one channel, the other channel can continue
controlling the vehicle.

• However, if the cross-checking functionality is also compromised (see Figure 43), the
channels will disagree, and the Selectors must resort to the buffered MRM, e.g., blind bra-
king using the last known curvature. Such a strongly degraded reaction should be consi-
dered unsafe in the presence of a single fault for high-speed AD use cases.

• A simultaneous failure of both channels leads to the buffered MRM. This is an accepta-
ble degradation for a dual-point fault.

49 We can assume that each channel can be internally divided into a perception layer (processing the sensor data into an environment model), a
planning layer (processing the environment model into a trajectory and actuator setpoints), and a checking layer (validating the other channel’s
trajectory against the own channel’s internal environment model).

106 www.the-autonomous.com

Figure 42: Sequence diagram of the CCP architecture. The case with a fault or output insufficiency in the planning layer of Channel 1 is shown.
Faulty messages are highlighted in yellow, fault containment in green.

Figure 43: Sequence diagram of the CCP architecture. The case with a fault or output insufficiency in the perception layer of Channel 1 is shown.
Faulty messages are highlighted in yellow, fault containment in green.

Sensor
System Channel 1 Channel 2 Selector 1 Selector 2 Actuator

System

SensorData – C1
(correct)

SensorData – C2
(correct)

ActuatorData – C1
(flty. A / flty. MRMa)

ValidatedData – C2
(NOK corr. B / NOK corr. MRMb)

ValidatedData – C1
(NOK flty. A /

NOK flty. MRMa)

ActuatorData – C2
(corr. B / corr. MRMb)

ActuatorData – C2
(corr. B / corr. MRMb)

ActuatorData – C1
(flty. A / flty. MRMa)

ActuatorData – sel.
(use buffer)

ActuatorData – sel.
(use buffer)

Sensor
System Channel 1 Channel 2 Selector 1 Selector 2 Actuator

System

SensorData – C1
(correct)

SensorData – C2
(correct)

ActuatorData – C1
(flty. A / flty. MRMa)

ValidatedData – C2
(OK corr. B / OK corr. MRMb)

ValidatedData – C1
(NOK flty. B /

NOK flty. MRMa)

ActuatorData – C2
(corr. B / corr. MRMb)

ActuatorData – C2
(corr. B / corr. MRMb)

ActuatorData – C1
(flty. A / flty. MRMa)

ActuatorData – sel.
(corr. B / corr. MRMb)

ActuatorData – sel.
(corr. B / corr. MRMb)

107www.the-autonomous.com

4.2.3.2 NOMINAL FUNCTIONALITY

Diagnostics scheme

The direct cross-check between the two channels in this architecture can be used to ad-
apt the ADI’s behavior, e.g., by using degradation when faults or functional insufficiencies
are detected in one of the channels. However, this only works for failure modes of the
planning layer.

• The two channels are aware of each other’s condition as they cross-check each other.

• Each of the channels could restrict itself to a degraded mode, e.g., more conservative
driving at lower speed or even an MRM, if it detects that the other channel is faulty. Ho-
wever, this does not address that the other channel might still invalidate it.

Availability of nominal functionality

While this architecture has equally capable cross-checking channels, a single fault or out-
put insufficiency causes a noticeable loss of functionality.

• Since both channels provide the nominal functionality (and are thus roughly equally ca-
pable), false positives in the cross-check should be less likely. As long as a trajectory ac-
ceptable to both channels is generated, the architecture can compensate for a false
positive.

• A single fault or output insufficiency can still immediately lead to a strongly degraded
MRM and complete stop. This can pose a nuisance (blocked traffic) or even lead to un-
safe situations.

• The arbitration in the Selectors is straightforward. The cross-check itself can be more
complicated, i.e., similar to a Doer / Checker pair.

• The algorithms for the Selectors are very simple. They prefer actuator setpoints that
have been found safe by both channels over those that have only been found safe by a
single channel (if the second channel is silent). If neither of these applies, the Selectors
remain silent and the Actuator System resorts to the buffered MRM.

Degradation scheme

The CCP architecture does not specify a degradation scheme
• An error such as in Figure 42 would not immediately impact the vehicle behavior. Ho-

wever, if the faulty channel does not recover quickly, the remaining channel should start
the hand-over to the driver and/or restrict itself to degraded trajectories (pull over and
come to a controlled stop). An error such as in Figure 43 would lead to an immediate
MRM.

• The channels can only act more conservatively and initiate the actions mentioned abo-
ve. Other levels of degradation are not possible. In general, a disagreement between
the two channels is strongly degraded and not graceful.

108 www.the-autonomous.com

4.2.3.3 CYBERSECURITY

4.2.3.4 SCALABILITY

Scalability towards higher availability

Adding more subsystems to this architecture would make it very loosely resemble the Dar-
uma architecture. For scalability, it is detrimental to include the cross-checking functiona-
lity inside the channels.

• This architecture could be extended by adding more channels. However, this also has
an impact on existing channels, which need to perform additional cross-checks, which
require additional interfaces.

• Adding more channels might make sense, adding more Selectors would not usefully im-
prove the architecture.

Interactions with external systems

This architecture requires interactions with the back end for both channels.
• The two channels likely require continuous communication with the back end.

• Both channels provide the nominal functionality. As such, they will likely require constant
connectivity to access HD maps or similar.

• Both channels will require regular updates (probably via OTA), though not necessarily
at the same time. The two Selectors should not change significantly over time and may
thus only rarely if ever need updates. Other, more secure update mechanisms could be
used for this.

Scalability towards different offering levels

This architecture does not consider the reuse of existing ADAS. The subsystems would
mostly need to be newly developed.

• Existing ADAS would require significant modifications to be used as one of the channels.
The cross-checking functionality and involved interfaces could require significant inter-
nal changes.

• Only parts of an ADAS SW stack could be carried over. The cross-checking functionality
and the Selectors would have to be newly developed.

Interactions between subsystems

The different subsystems in the CPP architecture almost all communicate with each other.
• There are interactions between all subsystems, except between the two Selectors.

• All interactions run once per execution cycle. The exchanged data structures are rela-
tively small, i.e., trajectories and actuator setpoints.

• There are well-defined interfaces between subsystems.

109www.the-autonomous.com

4.2.3.5 SIMPLICITY

Required level of diversity

While diversity is only required between two subsystems in this architecture, these both
provide the same, nominal functionality.

• Diversity between the two channels is required to prevent common cause faults or func-
tional insufficiencies. This is at the very least true for the perception layer50, but could be
easier for the planning and checking layers. The two Selectors are sufficiently simple
that they can be developed to the highest integrity levels and use homogeneous redun-
dancy.

• Both channels need to provide the same, nominal functionality. This makes it harder to
find diverse approaches and/or different suppliers.

50 Diversity in the perception layer could be facilitated by using different sensor sets for each channel. This may help prevent some common cause
functional insufficiencies. Diversity in the checking layer might not be obligatory if it is implemented with the highest integrity level.

Complexity of validation

This architecture benefits from the fact that there are only two complex subsystems. Howe-
ver, these are more closely coupled, which increases the complexity of the validation.

• The two channels can be validated independently, but the integrated system needs
substantial validation.

• The closer coupling implies that the overall validation effort could be higher due to
emergent behavior.

• The absence of common cause failures and functional insufficiencies only needs to be
shown for two complex subsystems (most other architectures require three).

Number, complexity, and performance of subsystems

The CPP architecture has very few subsystems but requires two channels capable of pro-
viding the nominal functionality.

• There are two complex and two simple subsystems in this architecture.

• The two channels both need to be capable of providing the nominal functionality,
which likely involves ML/AI.

• While the two channels will have high performance requirements, the two Selectors are
simple and have very low performance requirements.

110 www.the-autonomous.com

4.2.3.6 SAFETY OF THE INTENDED FUNCTIONALITY

Support to manage operational conditions

This architecture does not define specific ways to handle the ODD in a centralized way.

• Each channel has to monitor the ODD separately. No central mechanism for deciding
the reaction to an ODD exit or similar is foreseen.

• When an output insufficiency is detected, the other channel takes over control of the ve-
hicle. As all channels are capable of providing the nominal functionality, this is applica-
ble for the entire foreseen ODD. The channels are also aware of each other’s condition
and can use degradation, e.g., more conservative maneuvers and MRMs.

• No specific way for monitoring safety performance is defined for this architecture. Moni-
toring the checking results and Selector behavior could be useful.

Support to accommodate functional insufficiencies

The cross-checking channels can compensate for each other’s functional insufficiencies.

• An output insufficiency in one channel can be compensated for by the other channel if
these are sufficiently independent. If Channel 1 has a false positive (i.e., it sees a non-
existing object and plans a trajectory with unnecessary braking or evasion), Channel 2
should still consider Channel 1’s output safe. If Channel 1 has a false negative (i.e., it
doesn’t see an existing object and plans an unsafe trajectory), it should still consider
Channel 2’s output safe.

• The diversity of the channels should provide some robustness to functional insufficiencies.

• No specific strategy for defining independent sensor sets composed of different sensor
modalities is defined for this architecture. If sensors are shared between the channels,
which can be expected due to cost reasons, their independence can be compromised.
Additional analysis and rationales will be needed to argue that independence is main-
tained.

111www.the-autonomous.com

4.2.4 EVALUATION OF THE DARUMA ARCHITECTURE
4.2.4.1 AVAILABILITY

Availability of the system

The Daruma architecture consists of several simultaneously active, heterogeneous chan-
nels. All outputs are cross-checked against the channels’ environment models to create a
ranking according to safety, comfort, efficiency, etc.

• This architecture maintains safety (both integrity and availability) after the failure of any
single subsystem. If one of the channels suffers from a fault or functional insufficiency
(see Figure 44 and Table 18), the Daruma subsystem will likely assign it a low safety
score (as two environment models will consider it “unsafe”) and a low ranking and the
Selector will pick one of the higher-ranked, safer outputs. If one of the simple, and thus
fail-silent, Selector blocks is faulty, the respective other one takes over. If the fail-silent
Daruma block is faulty, the Selectors resort to a buffered MRM (see Figure 45), which
may be too strongly degraded for a single-point fault. It may also be challenging to im-
plement the medium-complexity Daruma subsystem as a fail-silent subsystem.

• The architecture can also tolerate some dual-points faults. A simultaneous failure of a
(fail-arbitrary) channel and one of the (fail-silent) Daruma or Selector blocks remains
safe. As all three channels generate Actuator Data, a simultaneous failure of two of
them can also be safe, but only if these failures are detectable (e.g., fail-silent) by the
cross-check. In the extreme case, only one of the Selector blocks might remain, output-
ting the buffered MRM as a last resort. The diversity of the channels can help address
common cause faults. The three channels can be designed to all aim to fulfill the nomi-
nal function or some might focus on generating MRM trajectories – accordingly, their re-
quirements towards sensors, HW processing elements, and application SW can be simi-
lar or differ significantly. The diverse case is more robust to common cause faults.

112 www.the-autonomous.com

Table 18: Possible fault / output insufficiency scenarios for the Daruma architecture, considering silent (s) and
arbitrary (a) failure modes. Diagonal elements: single-point faults (“OK” marks an MRM or better). Off-
diagonal elements: dual-point faults (“OK” marks blind braking or better).

Figure 44: Sequence diagram of the Daruma architecture. The case with a fault or output insufficiency in Channel 1 is shown. Faulty messages are
highlighted in yellow, fault containment in green.

C1 (s) C1 (a) C2 (s) C2 (a) C3 (s) C3 (a) D (s) S1 (s) S2 (s)

C1 (s) OK n/a OK
OK (if re-
sorting
to MRM)

OK
OK (if re-
sorting
to MRM)

OK OK OK

C1 (a) OK
OK (if re-
sorting
to MRM)

Incorrect
(unsafe)

OK (if re-
sorting
to MRM)

Incorrect
(unsafe) OK OK OK

C2 (s) OK n/a OK
OK (if re-
sorting
to MRM)

OK OK OK

C2 (a) OK
OK (if re-
sorting
to MRM)

Incorrect
(unsafe) OK OK OK

C3 (s) OK n/a OK OK OK

C3 (a) OK OK OK OK

D (s) Blind
braking OK OK

S1 (s) OK

OK (if
MRM buf-
fered at
actuators)

S2 (s) OK

113www.the-autonomous.com

Figure 45: Sequence diagram of the Daruma architecture. The case with a fault in the Daruma subsystem is shown. Faulty messages are
highlighted in yellow, fault containment in green.

Diagnostics scheme

The Daruma architecture is based on cross-checking between all channels and dynami-
cally selecting the best safe output for the current driving situation.

• Through cross-channel analysis, the faulty channel can be identified. This can allow
additional vehicle-level reactions, e.g., informing the driver and asking the remaining
channels to perform an MRM.

• The channels are, by design, not aware of each other’s condition. They only provide the
trajectory / actuator data and the environment model on standardized interfaces.

Degradation scheme

The Daruma architecture can, by design, be extended to include any number of channels
higher than one. While we discuss the one with three channels, which is the smallest one
able to satisfy high availability, more could be added to increase degradation options.

• How noticeable the loss of a channel is to the end user depends on their relative level
of degradation. If another channel can provide the nominal function, it will be unnoti-
ceable. Losing the only channel that can do so would, however, be immediately noti-
ceable.

• The levels of degradation can be very fine and tunable in this architecture as it is based
on dynamically switching between channels to find the one best suited for a particular
driving situation.

Sensor
System Channel 1 Channel 2 Channel 3 Selector 1Daruma Selector 2 Actuator

System

SensorData – C1
(correct)

SensorData – C2
(correct)

SensorData – C3
(correct)

ActuatorData – C2
(corr. B / corr. MRMb)

ActuatorData – C3
(corr. C / corr.

MRMc)

ValidationResults
(none)

ActuatorData – C1
(corr. A / corr. MRMa)

EnvironmentModel – C1
(correct A)

EnvironmentModel – C2
(correct B)

EnvironmentModel –
C3 (correct C)

ActuatorData – sel.
(correct MRMa)

ActuatorData – sel.
(correct MRMa)

114 www.the-autonomous.com

4.2.4.2 NOMINAL FUNCTIONALITY

Table 19: Different combinations of failures and/or functional insufficiencies and the resulting Daruma ranking.
If a channel experiences a false positive (FP) detection (i.e., a phantom obstacle), it may plan an unnecessarily
conservative trajectory. If it experiences a false negative (FN), it may plan an unsafe trajectory leading to a
collision.

Channel 1 Channel 2 Channel 3 Possible Daru-
ma ranking Comment

OK OK OK Ch1 > Ch2 > Ch3 Nominal case.

FP OK OK Ch1 > Ch2 > Ch3 Channel 1 may give the other two
channels low safety scores.

FP FP OK Ch1 > Ch2 > Ch3 A cautious reaction to the phantom
obstacle may still be safe.

FP FP FP Ch1 > Ch2 > Ch3 May still be safe.

FN OK OK Ch2 > Ch3 > Ch1

The other two channels may give
Channel 1 a low safety score. May be
indistinguishable from the case with
two false positives.

FN FN OK Ch3 > Ch1 > Ch2

Channel 3 may give the other two
channels low safety scores. May be in-
distinguishable from the case with one
false positive.

FN FN FN Ch1 > Ch2 > Ch3 Unsafe.

Availability of nominal functionality

The Daruma architecture dynamically selects the best safe output for the current driving
situation and is therefore able to well keep up nominal functionality even under faults,
provided that a symmetric system layout is implemented (i.e., all channels can handle no-
minal functionality).

• This architecture favors switching to a channel with a safer trajectory as long as the
channels are healthy. This may be unnoticeable as long as at least two channels work
properly. This makes the architecture less sensitive to false positives (i.e., a channel
“sees” an inexistent object) in the cross-validation of the different channels’ trajectories
and environment models (see also Table 19).

• Selecting the most suitable channel for each driving situation can help reduce nui-
sances. Among the safe trajectories, Daruma prefers the one that continues driving ins-
tead of stopping.

• The evaluation algorithms in the Daruma blocks can be split into two parts: the first is to
calculate different scores related to the safety, comfort, efficiency, etc. of a trajectory
with respect to each of the available environment models. The second step is to create
a ranking according to these scores. This ranking process will likely prominently consider
the safety scores. The algorithm for this may also take other diagnostics data or even
the traffic situation into account.

• The arbitration algorithms in the Selectors can be minimal, e.g., selecting the highest-
ranked output if it received a majority (i.e., at least 2oo3) and the hashes match.

115www.the-autonomous.com

4.2.4.3 CYBERSECURITY

4.2.4.4 SCALABILITY

Scalability towards higher availability

The Daruma architecture is intended to be extensible starting with two channels.
• More channels can be added to achieve higher availability goals. These can focus on

particular driving situations or levels of degradation.

• However, the cross-validation and subsequent ranking make adding many strongly de-
graded channels impractical as they could outvote those performing the nominal func-
tion and lead to more false positives.

Interactions with external systems

The different subsystems of the Daruma architecture require communication with external
systems, e.g., a backend infrastructure.

• All three channels require connectivity. As simpler subsystems, the Daruma and Selector
blocks are less likely to require this.

• Channels performing the nominal function may need constant connectivity to access
HD maps or similar.

• All channels will need regular updates, which implies OTA. The updates will likely be
less frequent for more strongly degraded channels or even absent for simple subsystems
like the Daruma and Selector blocks. The different subsystems may make use of different
update mechanisms, e.g., at the workshop.

Interactions between subsystems

The Daruma architecture requires only small amounts of data to be exchanged between its
subsystems.

• In this architecture, the channels only interact with the Daruma and Selector subsys-
tems. This communication is unidirectional.

• While most interfaces are narrow, an exchange of the environment model in a standar-
dized format is necessary. Depending on the implementation, this may still be a rela-
tively simple and small data structure, e.g., object list and outline of drivable area.

• Defined and restricted interfaces can be used.

Scalability towards different offering levels

The Daruma architecture can reuse existing ADAS with minimal modifications.
• An existing ADAS can be reused as one of the channels. Only the standardized output

interfaces for trajectory / actuator data and environment model need to be added.

• The Daruma and Selector subsystems are specific to the architecture and cannot be
carried over from SAE L2 systems. They need to be newly developed for SAE L4 use
cases.

116 www.the-autonomous.com

4.2.4.5 SIMPLICITY

Required level of diversity

The Daruma architecture relies on sufficient independence between the three (or more)
channels.

• To achieve this, the architecture will likely have to be based on heterogeneous redun-
dancy, i.e., diversity between the three complex subsystems. Depending on whether the
channels have a similar or different focus, this may be easier or harder to achieve. Due
to its very different role and lack of a perception component, the Daruma subsystem is
inherently diverse compared to the channels.

• The Selectors are simple subsystems and can probably rely on homogeneous redun-
dancy if they are developed to the highest applicable standards to preclude systematic
faults.

Number, complexity, and performance of subsystems

The Daruma architecture consists of both simple and complex subsystems.
• The architecture is comprised of three complex subsystems (the channels), two simple

subsystems (the Selectors), and a medium complexity subsystem (the Daruma). Optio-
nally, more channels can be added.

• All channels are likely to involve AI-based approaches. Depending on their relative le-
vel of degradation, i.e., focus towards providing the nominal function or only MRMs,
their performance requirements can differ. At least one channel has high performance
requirements.

• The Daruma and Selectors do not require AI-based approaches. The Selectors have
low performance requirements, but Daruma may require at least medium performance.

Complexity of validation

This architecture has several diverse subsystems requiring independent validation.
• The channels are not directly coupled to each other and can be validated separately.

• Due to the cross-check in the Daruma subsystem, an indirect coupling exists, which re-
quires joint validation. Their interplay and joint failure modes, e.g., scenarios where
more than one channel suffers from functional insufficiencies could be quite complex.

• Ensuring the absence of common cause failures between the three channels could be
challenging as they all have similar roles.

117www.the-autonomous.com

4.2.4.6 SAFETY OF THE INTENDED FUNCTIONALITY

4.2.5 EVALUATION OF THE CHANNEL-WISE DCF ARCHITECTURE
4.2.5.1 AVAILABILITY

Support to manage operational conditions

The Daruma architecture considers overarching SOTIF aspects, e.g., related to off-board
analysis.

• Each channel needs to check the ODD on its own. By design, the channels do not di-
rectly interact with each other.

• Other aspects to ensure safe usage are not explicitly mentioned but could be conside-
red in the implementation.

• The cross-check scores related to safety, comfort, efficiency, etc. can be collected for
off-board analysis.

Availability of the system

The C-DCF architecture consists of a heterogeneous hot standby redundancy (L2-System
and F-System). The outputs of the L2-System are checked by the independent M-System.
The system is capable of controlling the vehicle under both nominal and failure conditions.

• This architecture maintains safety (both integrity and availability) after the failure of any
single subsystem (see Table 20) with its redundant subsystems and communication
channels. If the L2-System is faulty (see Figure 46), the M-System will detect this, and the
D-Systems will switch to the output of the F-System. A faulty M-System only poses a la-
tent fault, which can be detected by latent fault tests51. If the F-System is faulty (see Figu-
re 47), the M-System detects this latent fault and triggers a degraded mode in the L2-
System. If one of the simple, and thus fail-silent, D-Systems is faulty, the respective other
one takes over.

• The architecture can also tolerate some dual-point faults. Simultaneous failures of one
of the complex subsystems (L2, M, or F) and one of the (fail-silent) D-Systems remain
safe. A simultaneous failure of two complex subsystems will generally lead to the ADI
going fail-silent. This could be addressed by adding a last resort, e.g., with a buffered
MRM trajectory.

51 These regularly test that the fault detection mechanisms work as intended. As an example, at regular intervals a faulty trajectory can be sent to
the M-System with the expectation that the M-System finds it “unsafe”.

Support to accommodate functional insufficiencies

This architecture considers several SOTIF aspects in the responsibilities of its subsystems.

• The architecture allows that each channel may focus on specific driving situations.

• The different channels are explicitly intended to compensate for each other’s functional
insufficiencies. They should be implemented in a diverse way on the algorithmic level.

• A diverse set of sensors can be used. No specific strategy for defining independent sen-
sor sets composed of different sensor modalities is defined.

118 www.the-autonomous.com

Table 20: Possible fault / output insufficiency scenarios for the C-DCF architecture, considering silent (s) and
arbitrary (a) failure modes. Diagonal elements: single-point faults (“OK” marks an MRM or better). Off-
diagonal elements: dual-point faults (“OK” marks blind braking or better).

Figure 46: Sequence diagram of the C-DCF architecture. The case with a fault or output insufficiency in the L2-System is shown. Faulty messages
are highlighted in yellow, fault containment in green.

Sensor
System L2 M F D2D1 Actuator

System

SensorData – L2
(correct)

SensorData – M
(correct)

SensorData – F
(correct)

ActuatorData – L2
(faulty C)

ActuatorData – L2
(correct A)

ActuatorData – F
(correct B)

ActuatorData – F
(correct B)

ActuatorData – sel.
(correct B)

ActuatorData – L2F
(flty. C / corr. B)

ValidationResults – L2
(unsafe)Degradation

Request
(no)

L2 (s) L2 (a) M (s) M (a) F (s) F (a) D1 (s) D2 (s)

L2 (s) OK n/a OK OK
Una-
vailable
(unsafe)

Incorrect
(unsafe) OK OK

L2 (a) OK OK Incorrect
(unsafe)

Una-
vailable
(unsafe)

Incorrect
(unsafe) OK OK

M (s) OK n/a
OK (if de-
faulting to
L2)

Incorrect
(unsafe) OK OK

M (a) OK
Una-
vailable
(unsafe)

Incorrect
(unsafe) OK OK

F (s) OK n/a OK OK

F (a) OK OK OK

D1 (s) OK
Una-
vailable
(unsafe)

D2 (s) OK

119www.the-autonomous.com

Figure 47: Sequence diagram of the C-DCF architecture. The case with a fault or output insufficiency in the F-System is shown. Faulty messages are
highlighted in yellow, fault containment in green.

Diagnostics scheme

The C-DCF architecture is based on checking the outputs of the L2- and F-Systems.
• The M-System checks both other complex subsystems and informs the L2-System if the F-

System is found to be faulty.

• This allows it to request the L2-System to go to a degraded mode (execute MRM and in-
form the driver) if there is a latent fault in the F-System.

Degradation scheme

This architecture provides for a controlled degradation of functionality under fault condi-
tions.

• Recovery of the L2-System is explicitly allowed, but only after a reset. The source materi-
al assumes that this would make transient faults or functional insufficiencies less noti-
ceable to the end user. A permanent switch to the F-System, which only generates MRM
trajectories, would be noticeable, though. Similarly, a latent fault in the F-System leads
to a noticeable reaction in the L2-System.

• Only the L2-System has defined levels of degradation, i.e., normal operation and MRM.

Sensor
System L2 M F D2D1 Actuator

System

SensorData – L2
(correct)

SensorData – M
(correct)

SensorData – F
(correct)

ActuatorData – L2
(correct A)

ActuatorData – F
(faulty B)

ActuatorData – F
(faulty B)

ActuatorData – L2
(correct A)

ActuatorData – sel.
(correct A)

ActuatorData – L2F
(corr. A / flty. B)

ValidationResults – L2
(safe)

Degradation
Request

(yes)

120 www.the-autonomous.com

4.2.5.2 NOMINAL FUNCTIONALITY

4.2.5.3 CYBERSECURITY

Interactions between subsystems

This architecture only requires low amounts of data to be exchanged between its subsys-
tems.

• There is no direct interaction between the L2- and F-Systems. The other subsystems all
interact with each other. Some communication is bidirectional.

• All interfaces are narrow, i.e., only trajectories, actuator setpoints, evaluation results, etc.

• Defined and restricted interfaces can be used.

Availability of nominal functionality

The C-DCF relies on an evaluation of the outputs of L2-System and safety evaluation of the
resulting trajectory in M-System. The D-Systems need to be simple and fault tolerant.

• This architecture is sensitive to false positives in the M-System, where even a transient
“detection” of an inexistent object can lead to switching to the F-System. This may be
compensated for if the L2-System can be recovered quickly enough. However, it is un-
clear how fast such a recovery could be achieved and consequently how noticeable a
false positive would be to the passengers.

• All complex subsystems are necessary for the reliability of the system. Although failures
of the L2-, M-, or F-Systems lead to a planned safety reaction, they reduce the system
reliability and can be perceived as a nuisance, e.g., unnecessary MRMs.

• The arbitration algorithms are simple and straightforward. The M subsystem evaluates
trajectories against its internal environment model and makes a binary decision based
on that, e.g., using a threshold based on risk scores.

• The logical decisions are outlined in the source material. The algorithms of the trajecto-
ry evaluation itself are specific to the implementation.

Interactions with external systems

While all subsystems in this architecture will need updates, some subsystems are relatively
loosely coupled. This could allow the use of different and potentially more secure update
mechanisms, making it harder to compromise the ADI with a single attack.

• All complex subsystems require communication with the back end.

• As the provider of the nominal functionality, the L2-System will likely need constant
connectivity to access HD maps or similar.

• All complex subsystems will require regular updates, likely via OTA. Only the D-Systems
may – if they are so simple that they can be thoroughly verified – not need updates, or at
most very rarely. A different update mechanism could be used for this.

121www.the-autonomous.com

4.2.5.4 SCALABILITY

4.2.5.5 SIMPLICITY

Scalability towards higher availability

The C-DCF architecture does not foresee extensibility.
• Improving the availability of the system would entail improving the availability of each

subsystem, which is not an architectural topic.

• Technically, it would be possible to add more L2-Systems, but this is not explicitly cove-
red in the source material. It would require extensive modifications of the M-System and
a more complex arbitration.

Required level of diversity

This architecture relies on sufficient independence between the three complex subsys-
tems.

• The L2-, M-, and F-Systems should be based on heterogeneous redundancy, i.e., diver-
sity. This is facilitated quite naturally by the fact that they have different roles and capa-
bility levels.

• The D-Systems can be homogeneously redundant. They are much simpler and could be
fully verified.

Number, complexity, and performance of subsystems

The C-DCF architecture consists of both simple and complex subsystems.
• The architecture is comprised of three complex subsystems (L2, M, and F) and two sim-

ple subsystems (D1 and D2).

• All complex subsystems are likely to involve AI-based approaches. The performance re-
quirements for the M- and F-Systems, which focus on monitoring and emergency reacti-
ons only, are likely lower than for the L2-System.

• The D-Systems are much simpler and have low performance requirements. If they can
be fully verified, homogeneous redundancy is recommended for them.

Scalability towards different offering levels

It may be possible to carry over components from an existing SAE L2 system or downgrade
to such a system.

• The L2-System has similar functionality and requirements to an SAE L2 ADAS and could
naturally be reused in a lower-tier vehicle as such, with M-, F- and D-Systems omitted.

• An SAE L2 ADAS system could be upgraded to the L2-System; some modifications, e.g.,
for degraded mode, would be necessary.

• The M-, F- and D-Systems are specific to the architecture and cannot be carried over
from SAE L2 systems. These components would need to be newly developed for SAE L4
use cases.

122 www.the-autonomous.com

4.2.5.6 SAFETY OF THE INTENDED FUNCTIONALITY

Support to accommodate functional insufficiencies

This architecture uses different roles for the complex subsystems.
• The complex subsystems have complementary functions – i.e., nominal function (L2),

monitoring (M), and MRM function (F).

• Assuming diverse algorithmic implementations, a high level of mutual coverage of trig-
gering conditions and avoidance of functional insufficiencies can be supported.

• A diverse sensor set can be used. Disjoint (or only partially shared) sensor sets for the
three complex subsystems are suggested.

Support to manage operational conditions

The C-DCF architecture supports a differentiated ODD supervision and handling on the ar-
chitecture level.

• The L2-System contains mechanisms to detect an ODD exit.

• The M-System also acts as an ODD monitor and checks the output of the L2-System for
violations of the ODD-related assumptions and the generated trajectory.

• The F-System by definition does not consider a particular ODD but assumes any driva-
ble road condition without weather or geofence limitation for its MRM.

• No specific way for data collection is defined for this architecture. The M-System could
naturally be enhanced to track operating conditions and safety margins of the L2-Sys-
tem’s operation.

Complexity of validation

This architecture has several diverse subsystems requiring independent validation.
• The L2- and F-Systems are not directly coupled and could be independently validated.

The L2- and M-Systems are more tightly coupled and probably require joint validation.
It may be similar for the F- and M-Systems. The D-Systems are so simple that they can
probably be fully verified.

• The possibility of independent validation reduces the validation effort drastically (com-
pared to black-box validation of a fully integrated system, e.g., the Single-Channel ar-
chitecture).

• Ensuring sufficient independence between the L2-, M-, and F-Systems is facilitated by
them having different roles. This can allow for using different functional approaches,
e.g., for perception, environment modeling, prediction, and/or planning.

123www.the-autonomous.com

4.2.6 EVALUATION OF THE LAYER-WISE DCF ARCHITECTURE
4.2.6.1 AVAILABILITY

Table 21: Possible fault / functional insufficiency scenarios for the L-DCF architecture, considering silent (s) and
arbitrary (a) failure modes. Diagonal elements: single-point faults (“OK” marks an MRM or better). Off-
diagonal elements: dual-point faults (“OK” marks blind braking or better). Entries in [brackets] are failure
modes excluded in the source material.

P (s) P (a) PSG (s) PSG (a) S (s) S (a) SSG (s) SSG (a) PS1 (s) PS2 (s)

P (s) OK n/a OK
[incor-
rect (un-
safe)]

OK OK

OK (if
MRM buf-
fered at
actuators)

[incor-
rect (un-
safe)]

OK OK

P (a) OK OK
[incor-
rect (un-
safe)]

OK OK

OK (if
MRM buf-
fered at
actuators)

[incor-
rect (un-
safe)]

OK OK

PSG (s) OK [n/a]

OK (if
MRM buf-
fered at
actuators)

OK (if
MRM buf-
fered at
actuators)

OK (if
MRM buf-
fered at
actuators)

[incor-
rect (un-
safe)]

OK OK

PSG (a)
[incor-
rect (un-
safe)]

[incor-
rect (un-
safe)]

[incor-
rect (un-
safe)]

[incor-
rect (un-
safe)]

[incor-
rect (un-
safe)]

[incor-
rect (un-
safe)]

[incor-
rect (un-
safe)]

S (s) OK n/a OK [OK] OK OK

S (a) OK OK [OK] OK OK

SSG (s) OK [n/a] OK OK

SSG (a) [OK] [OK] [OK]

PS1 (s) OK

OK (if
MRM buf-
fered at
actuators)

PS2 (s) OK

Availability of the system

The L-DCF architecture consists of a heterogeneous hot redundancy (Primary and Safing
channels). Each of these consists of a Doer / Checker (Safety Gate) pair, which makes this
architecture robust to dual-point faults or functional insufficiencies (see Table 21).

• This architecture maintains safety (both integrity and availability) after the failure of any
single subsystem. If the Primary subsystem is faulty (see Figure 48), the Primary Safety
Gate detects this and silences the entire Primary unit, allowing the Safing channel
(equivalent to a Fallback) to take over. Similarly, a (latent) fault in the Safing unit can be
detected and reacted to. It may also be challenging to implement the medium-comple-
xity Safety Gates, which process sensor data, as fail-silent subsystems. If one of the sim-
ple, and thus fail-silent, Priority Selectors is faulty, the respective other one takes over.
The source material shows a shared sensor set for the PSG, S, and SSG subsystems,
which needs to be handled carefully to prevent common cause faults; this pattern is
also repeated for other layers, e.g., using the same occupancy grid as inputs to the
planners and Safety Gates.

• The architecture can also tolerate dual-point faults. If there are simultaneous faults in
both Primary and Safing subsystems (see Figure 49), the Safety Gates resort to buffered
MRM trajectories. If there are simultaneous faults in both Safety Gates, the Priority Se-
lectors resort to a blind braking maneuver (see Figure 50).

124 www.the-autonomous.com

Figure 48: Sequence diagram of the L-DCF architecture. The case with a fault or a functional insufficiency in the Primary unit is shown. Faulty
messages are highlighted in yellow, fault containment in green.

Figure 49: Sequence diagram of the L-DCF architecture. The case with faults or functional insufficiencies in the Primary and Safing units is shown.
Faulty messages are highlighted in yellow, fault containment in green.

Sensor
System P PSG S PS 1SSG PS 2 Actuator

System

SensorData – P
(primary correct)

SensorData – PSG
(safing correct)

SensorData – S
(safing correct)

SensorData – SSG
(safing correct)

ActuatorData – P
(none)

ActuatorData – P
(faulty A)

ActuatorData – sel.
(buffered MRM)

ActuatorData – sel.
(buffered MRM)

ActuatorData –S
(faulty MRMa)

ActuatorData –S
(buffered MRM)

Envelope
(correct)

Envelope
(correct)

Sensor
System P PSG S PS 1SSG PS 2 Actuator

System

SensorData – P
(primary correct)

SensorData – PSG
(safing correct)

SensorData – S
(safing correct)

SensorData – SSG
(safing correct)

ActuatorData – P
(none)

ActuatorData – P
(faulty A)

ActuatorData – sel.
(correct MRMa)

ActuatorData – sel.
(correct MRMa)

ActuatorData –S
(correct MRMa)

ActuatorData –S
(correct MRMa)

Envelope
(correct)

Envelope
(correct)

125www.the-autonomous.com

Figure 50: Sequence diagram of the L-DCF architecture. The case with faults or functional insufficiencies in the Primary Safety Gate and Safing
Safety Gate is shown. Faulty messages are highlighted in yellow, fault containment in green.

Diagnostics scheme

The L-DCF is based on largely independent Doer / Checker pairs.
• The different subsystems are not aware of each other’s condition.

• The different subsystems do not adapt their behavior based on faults elsewhere in the
system.

Sensor
System P PSG S PS 1SSG PS 2 Actuator

System

SensorData – P
(primary correct)

SensorData – PSG
(safing correct)

SensorData – S
(safing correct)

SensorData – SSG
(safing correct)

ActuatorData – P
(none)

ActuatorData – P
(correct A)

ActuatorData – sel.
(blind brake)

ActuatorData – sel.
(blind brake)

ActuatorData –S
(correct MRMa)

ActuatorData –S
(none)

Envelope
(correct)

Envelope
(correct)

Degradation scheme

This architecture provides several levels of degradation of functionality under different
fault conditions.

• A permanent switch from the Primary channel to the (degraded) Safing channel would
be noticeable. The source material does not state explicitly whether back-and-forth
switching to cover transient faults is allowed. Some faults or functional insufficiencies
could be mitigated via the envelope feedback pattern where the Safing Safety Gate
provides its checking envelope to the Primary subsystem. This can help reduce the ne-
cessity for back-and-forth switching.

• While the different subsystems do not adjust their behavior internally, their different ro-
les allow for four levels of degradation: the nominal function (provided by the Primary
subsystem), a graceful MRM (provided by the Safing subsystem), a pre-planned MRM
(buffered by the Safety Gates), and a minimal blind braking maneuver (provided by the
Priority Selectors).

126 www.the-autonomous.com

4.2.6.2 NOMINAL FUNCTIONALITY

4.2.6.3 CYBERSECURITY

Interactions with external systems

While all subsystems in this architecture will need updates, some subsystems are relatively
loosely coupled. This could allow the use of different and potentially more secure update
mechanisms, making it harder to compromise the ADI with a single attack.

At least the Primary and Safing subsystems require communication with off-board systems.
As the provider of the nominal functionality, the Primary subsystem will likely need constant
connectivity to access HD maps or similar.
All complex subsystems will require regular updates, likely via OTA. The Priority Selectors
may – if they are so simple that they can be thoroughly verified – not need updates, or at
most very rarely. A different update mechanism could be used for this.

Availability of nominal functionality

The L-DCF architecture relies on two independent channels, each comprised of a trajec-
tory-producing subsystem and a Safety Gate.

• The envelope feedback can help reduce the sensitivity of the architecture to false positi-
ves in the Safety Gates (i.e., where they “see” inexistent objects).

• The reliability of the system hinges on the Safety Gates, which are intended to have hig-
her integrity levels than the Primary or Safing units. The multi-layered degradation strat-
egy with MRMs and pre-planned MRMs should help reduce the probability for nui-
sances, where the vehicle might block traffic due to an in-lane stop.

• The source material does not specify details of how the checks in the Safety Gates are
constructed. It may be challenging to reach the demanded high integrity levels (and
fail-silent property) in subsystems that include complex sensor data processing. The ar-
bitration in the Priority Selectors on the other hand should be simple and straightfor-
ward.

• The “permissive envelope”, which is roughly equivalent to the envelope feedback archi-
tectural pattern (see section 3.2.1.4), is not described in detail. While it may decrease
false positives, it must be carefully implemented to avoid internal shortcuts in trajectory
generation that would jeopardize independence between the Primary and Secondary
channels.

Interactions between subsystems

The subsystems are strongly separated, but the sharing of input sensor data from the Sa-
fing channel requires a broad communication interface to transfer a large amount of
data.

• The Primary and Safing subsystems do not communicate directly. However, there are
several interactions between the Safety Gates and safing sensor data is also shared
with the Primary Safety Gate. Adding more layers to the architecture increases the num-
ber of units and interfaces.

• Most interfaces are narrow, except for the sensor data sent to the Primary Safety Gate.

• Defined and restricted interfaces can be used.

127www.the-autonomous.com

4.2.6.4 SCALABILITY

4.2.6.5 SIMPLICITY

Number, complexity, and performance of subsystems

The L-DCF architecture consists of both simple and complex subsystems. Using more than
one layer increases the number of subsystems.

• The architecture is comprised of four complex subsystems (P, S, PSG, and SSG) and two
simple subsystems (PS1 and PS2). This number scales with the number of layers the ADI
is structured into. Two disjoint sensor sets are proposed.

• All complex subsystems are likely to involve AI-based approaches.

• It may be difficult to balance two conflicting design goals for the Safety Gates: ensuring
their (very high) integrity while keeping them sufficiently independent from their respec-
tive function counterparts.

• The performance requirements for the Safing subsystem and the Safety Gates, which fo-
cus on emergence reactions and monitoring only, are likely lower than for the Primary
subsystem.

• The Priority Selectors are much simpler and have low performance requirements. If they
can be fully verified, homogeneous redundancy could be employed.

Scalability towards different offering levels

It may be possible to carry over components from an existing SAE L2 system.
• The Primary and Safing subsystems have similar functionality and requirements to an

SAE L2 ADAS. These components could potentially be reused in a lower-tier vehicle with
only an L2 system, resulting in some cost savings.

• The Safety Gates and the Priority Selector are specific to SAE L4 and higher systems and
would need to be newly developed for such use cases.

Scalability towards higher availability

The L-DCF architecture does not foresee extensibility. Each channel may be split into se-
veral layers, which may help with increasing availability.

• As each channel can be split into several layers, with independent Primary and Safing
units and associated Safety Gates, it may be possible to feed later layers with the vali-
dated output of earlier layers, e.g., Primary Safety Gate of perception layer feeds into
both Primary and Safing channels of planning layer. This may increase availability to
some extent.

• Each channel could be split into multiple layers with distinct subsystems, e.g., Primary
Perception unit, Primary Perception Safety Gate, Primary Planning unit, etc. This will
need careful mapping to maintain fault containment units.

128 www.the-autonomous.com

4.2.6.6 SAFETY OF THE INTENDED FUNCTIONALITY

Support to manage operational conditions

This architecture does not define specific ways to handle the ODD in a centralized way.
• Each channel has to monitor the ODD separately. No central mechanism for deciding

the reaction to an ODD exit or similar is foreseen.

• When a functional insufficiency occurs in the Primary channel, the Safing channel takes
over control of the vehicle. If it is also not available, a more strongly degraded reaction
can be applied. This is less reliant on an ODD.

• No specific way for monitoring safety performance is defined for this architecture.

Support to accommodate functional insufficiencies

This architecture uses different roles for some of the complex subsystems.
• The Primary and Safing subsystems have different roles. The two Safety Gates also have

a different role. This helps address the different ODDs and driving policies.

• A high level of coverage of triggering conditions and functional insufficiencies can be
supported if diverse algorithmic implementation is applied.

• A diverse sensor set can be used. Independent primary and safing sensor sets are sug-
gested.

Complexity of validation

This architecture has several diverse subsystems, only some of which allow for indepen-
dent verification.

• In each channel, the function subsystem (P or S) is coupled with the respective Safety
Gate and will likely need to be jointly validated. There is also some coupling between
the Primary and Safing channels.

• The required validation effort may increase further if more than one layer is used.

• Ensuring sufficient independence between the P, S, PSG, and SSG subsystems is facili-
tated by them having to some extent different roles. This can allow for using different
functional approaches, which may be specific to the respective layer, supporting argu-
ments that common cause failures are addressed.

Required level of diversity

This architecture relies on sufficient independence between the Primary and Safing chan-
nel and also between the core function and the Safety Gate in each channel.

• The Primary and Safing channels should be based on heterogeneous redundancy, i.e.,
diversity. In addition, the functional subsystem (P or S) and respective Safety Gate will
also need to be independent. This may be facilitated by the fact that they have different
roles and capability levels.

• The Priority Selectors can be homogeneously redundant. They are much simpler and
could be fully verified.

129www.the-autonomous.com

4.2.7 EVALUATION OF THE DSM ARCHITECTURE
4.2.7.1 AVAILABILITY

Table 22: Possible fault / functional insufficiency scenarios for the DSM architecture, considering silent (s) and
arbitrary (a) failure modes. Diagonal elements: single-point faults (“OK” marks an MRM or better). Off-
diagonal elements: dual-point faults (“OK” marks blind braking or better). Entries in [brackets] are failure
modes excluded in the source material.

FUN (s) FUN (a) SFM (s) SFM (a) CSM (s) CSM (a) VSM (s) VSM [a]

FUN (s) OK n/a OK OK OK
OK (if
monitored
by VSM)

OK [incorrect
(unsafe)]

FUN (a) OK OK Incorrect
(unsafe)

Incorrect
(unsafe)

Incorrect
(unsafe) OK [incorrect

(unsafe)]

SFM (s) OK n/a OK
OK (if
monitored
by VSM)

OK [incorrect
(unsafe)]

SFM (a) OK OK
OK (if
monitored
by VSM)

OK [incorrect
(unsafe)]

CSM (s) OK n/a OK [incorrect
(unsafe)]

CSM (a)
OK (if mo-
nitored by
VSM)

Incorrect
(unsafe)

[incorrect
(unsafe)]

VSM (s) OK [n/a]

VSM [a] [OK]

Availability of the system

The DSM architecture is an extension of the E-GAS architecture with availability in mind.
• This architecture maintains safety (both integrity and availability) after the failure of any

single subsystem. If the FUN subsystem is faulty (see Figure 51), the SFM subsystem
detects this and silences it, allowing the VSM to take over with a graceful MRM. Each
subsystem is monitored by another subsystem, which can silence it. The fail-silent failure
mode assumption of the VSM may be harder to achieve as this subsystem needs to pro-
cess sensor data. Unlike most other architectures, the reaction may be delayed by one
cycle, i.e., until the faulty subsystem has been turned off. The source material also pro-
poses redundant sensor sets and communication networks.

• The architecture can also tolerate some dual-point faults. Simultaneous failures of the
FUN and VSM subsystems (see Figure 52) are detected by the CSM subsystem, which
takes over with a degraded MRM.

130 www.the-autonomous.com

Figure 51: Sequence diagram of the DSM architecture. The case with a fault or functional insufficiency in the FUN subsystem is shown. Faulty
messages are highlighted in yellow, fault containment in green.

Sensor
System FUN SFM CSM VSM Actuator

System

SensorData – FUN
(correct)

SensorData – SFM
(correct)

SensorData – VSM
(correct)

ActuatorData – FUN
(faulty)

DiagnosticsData –
FUN

(NOK)

Envelope
(correct)

ActuatorData – VSM
(correctMRM)

ActuatorData – CSM
(none)

ShutoffRequest
(shutoff)

DetourRequest
(none)

ActuatorData – FUN
(faulty)

DiagnosticsData –
SFM
(OK)

Supression
(no)

VMStatus
(off)

Watchdog
(challenge)Response

(correct)

Response
(correct)

Watchdog
(challenge)

131www.the-autonomous.com

Figure 52: Sequence diagram of the DSM architecture. The case with faults or functional insufficiencies in the FUN and VSM subsystem is shown.
Faulty messages are highlighted in yellow, fault containment in green.

Degradation scheme

The DSM architecture provides for a controlled degradation of functionality under failure
conditions.

• Transient faults can occur frequently. As this architecture does not foresee back-and-
forth switching – faulty subsystems are shut down – these would be immediately noticea-
ble to the end user.

• Degradation occurs in a controlled manner, depending on the nature of faults
detected. There are five different modes of operation, each providing diminishing levels
of comfort to the passengers: Full AD mode, a “detour” mode when repair is needed, a
“comfort stop” occurring at the next opportunity, an immediate “safety stop” when the
fault(s) require urgent reaction, and an “emergency stop” when it is no longer safe to
continue operating.

Diagnostics scheme

The architecture includes multiple layers of diagnostic checking.
• Continuous diagnostic checking is performed on the functional sensors, safety sensors,

as well as between various subsystems within the architecture. If a subsystem is found to
be faulty, it is shut down by the subsystem monitoring it.

• A continuous (cross-checking) challenge and response mechanism between the VSM
and CSM confirms that both subsystems are within their safe operational parameters.

Sensor
System FUN SFM CSM VSM Actuator

System

SensorData – FUN
(correct)

SensorData – SFM
(correct)

SensorData – VSM
(correct)

ActuatorData – FUN
(faulty)

DiagnosticsData –
FUN

(NOK)

Envelope
(correct)

ActuatorData – VSM
(none)

ActuatorData – CSM
(correctMRM)

ShutoffRequest
(shutoff)

DetourRequest
(none)

ActuatorData – FUN
(faulty)

DiagnosticsData –
SFM
(OK)

Supression
(no)

VMStatus
(off)

Watchdog
(challenge)Response

(correct)

Response
(faulty)

Watchdog
(challenge)

132 www.the-autonomous.com

4.2.7.2 NOMINAL FUNCTIONALITY

4.2.7.3 CYBERSECURITY

Interactions with external systems

It is expected that this architecture will require communication outside of the system. All
subsystems are likely to require regular updates. As a result, the system would likely be
connected to a network to perform these updates.

• All subsystems require communication with the outside world.

• The FUN subsystem provides the nominal functionality and will therefore likely need
constant connectivity to access HD maps or similar.

• Several subsystems (mostly the FUN and only to a lesser extent the associated SFM) are
highly complex and likely to require frequent updates, which are thus likely to use OTA.
The other subsystems (CSM and VSM) are slightly simpler and likely to require less fre-
quent updates, which may thus use more secure update mechanisms.

Availability of nominal functionality

The DSM architecture provides two subsystems capable of fully autonomous operation.
Only the FUN subsystem can provide the nominal functionality.

• Recovery options are not explicitly discussed in the source material. Without recovery, a
false positive in the SFM or CSM subsystem could lead to a loss of nominal functionality
as the FUN subsystem would be shut down.

• The active checking approach performed by the CSM is unclearly defined and may be
impractical if the asked-for agreement is too strict. Differences between FUN and VSM
actuator commands must be expected due to differences in sensor inputs and compu-
tational algorithms. These differences may not indicate failure but rather different cor-
rect decisions. The CSM may thus need to resort to the MRM, which reduces the availa-
bility of the nominal functionality.

• The DSM architecture requires a complex mix of hardware and software. The resulting
architectural footprint may result in a higher potential defect rate within subsystems or
in the interactions between subsystems.

Interactions between subsystems

Several subsystems in this architecture are capable of shutting down other subsystems,
which can have a significant impact.

• There are a lot of interactions between subsystems, all of which are complex. In additi-
on, several subsystems are capable of shutting down other subsystems. A single com-
promised subsystem can therefore have a large impact.

• All interfaces are narrow, i.e., only trajectories, actuator setpoints, diagnostics data, etc.

• Defined and restricted interfaces can be used.

133www.the-autonomous.com

4.2.7.4 SCALABILITY

4.2.7.5 SIMPLICITY

Scalability towards different offering levels

It may be possible to carry over components from an existing SAE L2.

• The FUN has similar functionality and requirements as an SAE L2 ADAS. Parts of this
component could potentially be reused in a lower-tier vehicle with only an L2 system, re-
sulting in some cost savings.

• Other components of the system are specific to SAE L4 or higher (SFM, CSM, and VSM).
These components would likely be developed and manufactured only for the fully functi-
onal AD system.

Scalability towards higher availability

This architecture appears to be extensible to achieve higher availability, e.g., for fully driver-
less AD use cases.

• This architecture explicitly has scalability in mind to achieve higher availability if needed.

• There is the possibility to add more VMs (adding more FUN and SFM modules) for higher
availability or for load balancing if performance is an issue. However, there is only one
VSM, which could prove a bottleneck for increasing availability if it is prone to failure.

Number, complexity, and performance of subsystems

The DSM architecture consists of complex subsystems which interact in a complicated
manner.

• All subsystems (FUN, SFM, CSM, and VSM) are relatively complex.

• All subsystems performing perception by processing raw sensor data are likely to invol-
ve AI-based approaches.

• While FUN and SFM are the most complex, the CSM subsystem may have only modera-
te complexity and low performance requirements, but this depends on the complexity of
the implemented checking approach. The VSM subsystem has at least moderate
complexity, but it may be challenging to build a fail-silent, high integrity subsystem that
implements perception and trajectory generation. The source material discusses using
two disjoint sensor sets and redundant high-bandwidth communication networks,
which are implementation considerations. Both of these imply higher manufacturing
costs and complexity.

134 www.the-autonomous.com

4.2.7.6 SAFETY OF THE INTENDED FUNCTIONALITY

Support to manage operational conditions

The DSM architecture considers ODDs (or their absence) for each subsystem.
• The SFM is explicitly intended to act as an ODD checker.

• The different levels of degradation (e.g., “comfort stop”, “safe stop”) each imply a diffe-
rent ODD.

• No specific way for data collection is defined for this architecture.

Complexity of validation

This architecture has a high number of diverse subsystems requiring independent valida-
tion.

• The FUN, SFM, CSM, and VSM subsystems perform different functions within the vehic-
le. The FUN and SFM subsystems are most closely coupled to each other and probably
require joint validation.

• The CSM and VSM are less closely coupled to the FUN and SFM, which could decrease
the validation effort compared to a fully integrated system.

• Ensuring sufficient independence between the FUN, SFM, CSM, and VSM subsystems is
facilitated by them having different roles. This can allow for using different functional
approaches, e.g., for perception, environment modeling, prediction, and/or planning.

Required level of diversity

This architecture relies on sufficient independence between its four subsystems.
• The FUN and the SFM are complementary, making it easier to ensure sufficient inde-

pendence. The FUN, SFM, CSM, and the VSM perform different functions within the ve-
hicle. The VSM is capable of driving fully autonomously, however it makes use of a diffe-
rent set of input sensors than the FUN and is intended only for short-term use when the
FUN is failing. The VSM is also expected to be a somewhat simpler control algorithm
than the FUN. Most likely there would be little commonality between the two. Therefore,
all four of these components would have very different functional requirements, resul-
ting in very diverse development, verification, and validation.

• Most of the diverse subsystems have moderate to high complexity and performance re-
quirements.

Support to accommodate functional insufficiencies

This architecture uses different roles with respect to SOTIF aspects for the subsystems.
• The SFM is explicitly intended to act as an ODD checker.

• The FUN, SFM, and VSM perform different functions within the vehicle. They can be im-
plemented in a diverse way on the algorithmic level.

• A diverse set of sensors can be used. A sensor set split between functional and safety
aspects is suggested.

135www.the-autonomous.com

4.2.8 EVALUATION OF THE AD-EYE ARCHITECTURE
4.2.8.1 AVAILABILITY

Table 23: Possible fault / functional insufficiency scenarios for the AD-EYE architecture, considering
silent (s) and arbitrary (a) failure modes. Diagonal elements: single-point faults (“OK” marks an
MRM or better). Off-diagonal elements: dual-point faults (“OK” marks blind braking or better).

C1 (s) C1 (a) C2a (s) C2a (a) C2b (s) C2b (a) S1 (s) S2 (s)

C1 (s) OK n/a OK (blind
braking) OK OK (blind

braking)
Incorrect
(unsafe) OK OK

C1 (a) OK Incorrect
(unsafe)

Incorrect
(unsafe)

Incorrect
(unsafe)

Incorrect
(unsafe) OK OK

C2a (s) OK n/a OK OK OK OK

C2a (a)

Same
lane MRM
(worst
case)

OK (same
lane MRM
or blind
braking)

Incorrect
(unsafe) OK OK

C2b (s) OK n/a OK OK

C2b (a)

Same
lane MRM
(worst
case)

OK OK

S1 (s) OK OK (blind
braking)

S2 (s) OK

Availability of the system

AD-EYE is an asymmetric architecture which allows for two independent sensor stacks and
computational channels, enabling robustness against most single-point faults and functi-
onal insufficiencies. Robustness is achieved through an Operational Envelope enforced by
Channel 2a, which constrains Channel 1 under degraded conditions. However, the me-
chanism is sensitive to certain perception faults in Channel 2b. In rare cases of persistent
sensor or perception issues, the envelope may remain overly restrictive, unnecessarily trig-
gering a same-lane MRM (see Figure 54 and Figure 55). This is considered an acceptable
tradeoff, as it significantly reduces the risk of more common functional insufficiencies, at
the cost of a non-ideal MRM outcome in rare scenarios.

• Both channels are capable of executing an MRM in case of faults in the other. A simpler
sensor stack in Channel 2, and its short time horizon for planning, allows for compara-
tively simpler design of Channel 2.

• AD-EYE employs structural diversity between Channel 1 and Channel 2 to mitigate dual-
point fault modes (see Table 23). Channel 1 supports graceful degradation, and both
channels can independently execute MRMs to maintain safety.

136 www.the-autonomous.com

Figure 53: Sequence diagram of the AD-EYE architecture. The case with a fault or functional insufficiency in Channel 1 is shown. Faulty messages are
highlighted in yellow, fault containment in green.

Figure 54: Sequence diagram of the AD-EYE architecture. The case with a fault or functional insufficiency in Channel 2a is shown. Faulty messages
are highlighted in yellow, fault containment in green.

Sensor
System

Channel
1

Channel
2a

Channel
2b

Selector
2

Selector
1

Actuator
System

SensorData – C2b
(correct)

SensorData – C1
(correct)

Enivronment model
(correct)

Heartbeat
(alive)

Internal states – C1
(faulty)

Redundant
trajectory

(trajectory C2)

Selection decision
(select C2)

Selected trajectory
(trajectory C2)

Selected trajectory
(trajectory C2)

Envelope limits
(correct)

Trajectory within
envelope
(faulty)

137www.the-autonomous.com

Figure 55: Sequence diagram of the AD-EYE architecture. The case with a fault or functional insufficiency in Channel 2b is shown. Faulty messages
are highlighted in yellow, fault containment in green.

Diagnostics scheme

The AD-EYE architecture supports mutual awareness between channels.

• Channel 2 monitors the outputs, internal states, and actuator commands generated by
Channel 1, verifying plausibility and consistency relative to its own independent percep-
tion and environmental model. Channel 2 defines and enforces an operational envelo-
pe within which Channel 1 must operate. Channel 1 is aware of the condition of Channel
2 through system diagnostics and responds by initiating an MRM in case of an error in
Channel 2.

• Adaptation is based on predefined mechanisms triggered by cross-channel diagno-
stics. Channel 2 supervises the operational envelope of Channel 1, progressively cons-
training its actions if degradations are detected, or relaxing constraints if conditions re-
cover. Upon detecting a fault or implausibility in Channel 1, Channel 2 inhibits actuator
commands from Channel 1 and commands execution of a fallback trajectory. Converse-
ly, if Channel 2 becomes faulty, Channel 1 autonomously initiates an MRM.

138 www.the-autonomous.com

4.2.8.2 NOMINAL FUNCTIONALITY

4.2.8.3 CYBERSECURITY

Availability of nominal functionality

Availability of the nominal functionality is addressed through structured simplicity, redun-
dancy, and degradation handling. See section 4.2.8.1 for details on the Operational En-
velope degradation.

• False positives are an expected side effect of complex perception systems, the architec-
ture is designed to handle these, rather than avoid them entirely. The separation of du-
ties across channels ensures that functional insufficiencies or transient faults in Channel
1 do not immediately trigger an MRM, but rather a constraining of its Operational Enve-
lope.

• Degradation is gradual and continuous, with a limp-home mode built in to take the ve-
hicle off the roads to safe stop locations outside if necessary.

• The arbitration component, the Selector, acts as a multiplexer and does not have deci-
sion-making or evaluation capabilities.

• The decisions made by the Selector can be represented by a few lines of pseudocode.

Interactions between subsystems

The separation between Channel 1, Channel 2 and the selector Unit creates defined Fault
Containment Units and requires several simultaneous exploits before compromise.

• The Subsystems communicate over strictly defined interfaces to limit internal propagati-
on paths.

• A fault or insufficiency in Channel 2 could lead to a lack of availability by a constrained
Operational Envelope, but it cannot directly influence or invalidate the trajectory from
Channel 1.

• The communication between Subsystems is frequent but quite limited in extensiveness.

• The interfaces are well defined and static, without large amounts or dynamically defi-
ned data being sent across subsystems.

Degradation scheme

The AD-EYE architecture supports multiple levels of degradation to maintain safety and
predictability. One of the design principles it is built on is the effective handling of transi-
ent faults that arise as a result of complex AD functionality.

• Errors result in controlled transitions that are noticeable but not abrupt. Graceful degra-
dation leads to limited functionality without compromising driving stability, while fall-
back to MRM produces deliberate stopping behavior that is visible and understandable
to the user.

• Channel 1 can degrade gracefully by continuously constraining its nominal functionality
when non-critical faults are detected, thereby preserving user experience and progress
towards goal, and healing from transient faults. If conditions worsen, the system pro-
gresses to full fallback by executing an MRM. This staged approach ensures that degra-
dation occurs gradually, with predefined transitions that prioritize user safety. For non-
severe detected faults in Channel 1, Channel 2 can also trigger a change in Channel 1’s
goal to a safer location, such as an off-highway area or workshop, if available. This ac-
tion, used in conjunction with the Operational Envelope, further enhances traffic safety.

139www.the-autonomous.com

4.2.8.4 SCALABILITY

Scalability towards higher availability

The AD-EYE architecture supports scalability in functionality and availability through modu-
lar design and configurable recovery mechanisms.

• The architecture supports availability goals beyond those of the reference case by
enabling handling and recovery from transient errors, with its Operational Envelope and
supporting limp-home modes in Channel 1. Channel modularity and distinct design ob-
jectives allow expansion of functional capabilities, while fallback mechanisms remain
independent of minor extensions. Both the enhancement of channel functionality and
the customization of MRMs are possible within the existing architectural framework wi-
thout requiring fundamental redesign.

• While not explicitly foreseen in the source material, for higher availability targets Chan-
nel 1 could be enhanced through duplication of internal components or by duplicating
the entire channel, with a decision-making subsystem selecting the output trajectory for
the Selector.

Interactions with external systems

External interactions in the AD-EYE architecture are limited and controlled to maintain sys-
tem integrity. It is assumed that the vehicle can establish secure communication to the
OEM cloud to ensure updates of the maps data, and that SW can be updated securely via
service centres or the cloud.

• Only Channel 1 is expected to potentially interface with external systems during run
time. Channel 2 during run time remains isolated (no external connectivity) due to its
importance, reducing the attack surface. Both Channels are expected to have some
communication with the outside world for the purposes of SW download and calibrati-
on data. The Selector is not expected to require communication.

• As the provider of the nominal functionality, Channel 1 will likely need constant connec-
tivity for HD maps, V2X, etc. Channel 2 only needs access to less detailed and more
slowly changing information such as lanes or driving directions.

• Channel 1 requires regular updates, probably OTA. Channel 2 and Selector updates are
less frequent and can be done separately.

Scalability towards different offering levels

The architecture’s modular design enables efficient variant management and tailoring
across vehicle classes and feature sets. Reuse and scalability across offering levels are key
design principles, allowing additional capabilities—such as higher speeds or new AD
features—without requiring changes to the fundamental structure.

• Channel 1 can be extended with additional functionality or performance improvements,
with corresponding adjustments to Channel 2 depending on the scale of feature grow-
th.

• All subsystems are needed across different offering levels, as they are intended to ope-
rate together. The architecture was designed for L3 and above AD functions, and reuse
towards L4 (and potentially L5) is considered as a key design principle. However, reuse
from an L2 system towards L4 was not considered the design intent and requires consi-
derable effort to add, e.g., Operational Envelopes and analyze in new context.

140 www.the-autonomous.com

4.2.8.5 SIMPLICITY

Required level of diversity

The AD-EYE architecture specifies where diversity is required between subsystems:
• Heterogeneity is required between Channels 1 and 2 to ensure sufficient independence.

Channels 1 and 2 need diverse implementations including independent sensor stacks
and actuation code. This may include sufficiently different hardware platforms52, soft-
ware implementations, and sensing modalities to mitigate common cause failures.

• A core design principle is to limit the number of complex channels and duplication
where possible and limit the number of Channels. The design does not mandate high
amounts of duplication such as with symmetric patterns like TMR.

52 Some high-performance hardware components achieve ASIL D for systematic faults; in this case diverse hardware may not be required.

Complexity of validation

Each large Fault Containment Unit, roughly the channels and the Selector component,
can be developed and verified individually, simplifying the validation process of the entire
system.

• The individual subsystems can be verified independently of each other for their nominal
functionality. Channel 1 and Channel 2 will have to be validated together to ensure the
validation of the system.

• The architecture reduces the validation effort of the system with structured verification
but does not remove the need to have system validation of the integrated result.

• Ensuring sufficient independence between Channel 1 and Channel 2 is facilitated by
them having different roles and Channel 2’s simplicity.

Number, complexity, and performance of subsystems

The AD-EYE architecture defines a limited set of subsystems with well-defined complexity
and performance demands:

• Five main subsystems exist in this architecture.

• Channel 1, designed for performance, is the most complex subsystem. Channel 2 has
lower complexity due to its limited time horizon, simpler sensor sets, and more determi-
nistic, formally verifiable planning algorithms. Channel 2a has deterministic rule-based
algorithms and monitors. Channel 2b’s primary complexity arises from its nondetermini-
stic perception stack. The Selector subsystems are the simplest and are fully formally ve-
rifiable.

• Performance, power consumption, and hardware demands follow the complexity order:
Channel 1, Channel 2b, Channel 2a and the Selectors.

141www.the-autonomous.com

4.2.8.6 SAFETY OF THE INTENDED FUNCTIONALITY

4.3 SPECIFIC EVALUATION IN THE CONTEXT OF THE
REFERENCE AD USE CASE
4.3.1 RELEVANCE OF THE EVALUATION CRITERIA IN THE CONTEXT OF THE REFERENCE
AD USE CASE
Depending on the selected use case, some KPIs may be more relevant than others. For instance,
scalability (defined as a measure of an architecture’s capability to be stepwise developed by
extending SAE L2 systems) will likely not be relevant for urban SAE L5 robotaxis, which tend to
be developed from scratch and are not intended to be sold as optional functions of standard
OEM offerings to end users.

Conversely, scalability may be highly relevant for a Highway Pilot function, which might be de-
veloped as a natural extension of highway-oriented L2 applications. In the following, we att-
empt to give an assessment of the selected KPIs in the context of the reference use case of an
SAE L4 Highway Pilot. We employ the following ratings for the KPIs:

• Must-have

• Important

• Beneficial

Readers of this document are encouraged to apply their own ratings to match their specific use
cases, innovation space, and constraints from commercial, technical, or legacy requirements.

Support to manage operational conditions

ODDs are monitored in each channel independently, with no overlap of perception stacks.
• ODDs are monitored in each channel independently.

• The architecture does not define driver control during operation. Activation of the sys-
tem is only allowed when Channel 2 allows it. Once activated, the system does not
disengage until an MRC is reached. Degraded modes and emergency modes are
handled by the architecture.

• The architecture supports the collection of SPIs via aggregating data and the connecti-
vity in Channel 1. The data collection could be in real time, but there are no recommen-
dations provided on data collection.

Support to accommodate functional insufficiencies

Functional diversity between Channel 1 and Channel 2b supports SOTIF objectives. By de-
sign, the fallback channel (2b) is simpler and based on different assumptions and proces-
sing, minimizing common insufficiencies between the channels.

• Each channel handles the ODD, OEDR, maneuvers, and traffic rules independently.

• The diversity in the channels incl. sensors help complement each other and compensa-
te for SOTIF issues. In case of mismatch, common with complex sensors, the system
handles the issue akin to a transient error and constrains the operational envelope, al-
lowing for a recovery before resorting to an MRM if the error persists.

• A diverse set of sensor modalities is required for the channel and is addressed. The ar-
chitecture does not specify or recommend specific sensor modalities to be limited to
specific channels.

142 www.the-autonomous.com

AVAILABILITY
In the context of an L4 Highway Pilot, availability of the system until successful completion of an
MRM will become a formal safety goal with an ISO 26262 ASIL D target to be met (pending a
formal HARA being conducted), as a system failure in a dense highway traffic situation will
usually not be controllable by the driver and the consequences of a crash might be fatal. The-
refore, availability is rated as a must-have for the reference use case.

NOMINAL FUNCTIONALITY
In the reference use case of an SAE L4 Highway Pilot, reliability (defined as the continuous
availability of the full, nominal functionality) is highly desirable from a vehicle user’s perspective
and shall be maximized. A switch to degraded functionality, e.g., executing an MRM, will be at
least an annoyance or more likely disturbing for the passengers; frequent ones will lead to se-
vere customer complaints, but will at least not lead to harm. Therefore, reliability is rated as
important for the reference use case.

CYBERSECURITY
Vulnerability to cybersecurity threats impacts system safety, as an intruder might deactivate an
essential safety mechanism or even maliciously manipulate essential autonomous driving func-
tions like sensor inputs or trajectory planning. Still, an ADI by itself will not be able to fully avert
cybersecurity risks, as many system functions (e.g., the sensors and actuators) are outside its
scope and additional mechanisms like gateways and firewalls are needed. Therefore, alt-
hough resilience to cybersecurity attacks is a must-have for the vehicle and the AD system as a
whole, it is “just” considered important for the ADI system in the context of the reference use
case.

SCALABILITY
Since the chosen reference use case of an SAE L4 Highway Pilot may be developed as a natural
extension of highway-oriented legacy SAE L2 functions, parts of those functions (legacy sensors,
ECUs, application components) might need to be incorporated into the realization of the L4
system. Conversely, L2 functions might be implemented by a subset of components of the L4
system, which has been developed from scratch. In both cases, the L4 functionality might be
marketed as optional equipment, and potentially a significant share of the overall vehicle vo-
lume might support L2 functions only. To implement such a concept in a commercially viable
way, scalability is considered beneficial for the reference use case.

SIMPLICITY
Although simpler than SAE L5 functions or urban use cases, the algorithmic and system comple-
xity for an SAE L4 Highway Pilot remains high and verification and validation efforts might be
prohibitive if not supported by a suitable system architecture. The established concept of “divi-
de and conquer”, i.e., a conceptually clean, modular architecture with a well-arranged num-
ber of components of clear purpose, simple interfaces, and clear delimitations to each other,
will be at least important if not a must-have for the reference use case.

SAFETY OF THE INTENDED FUNCTIONALITY
SOTIF is probably the key property and requirement that laypersons and the general public
associate with autonomous driving functions, and technical as well as authority reports about
incidents with autonomous vehicles mostly focus on function aspects and deficiencies, e.g., ob-
ject detection capabilities. In the context of the reference use case, SOTIF is considered a must-
have.

143www.the-autonomous.com

4.3.2 ASSESSMENT OF THE CANDIDATE ARCHITECTURES UNDER THE EVALUATION
CRITERIA
4.3.2.1 AVAILABILITY ASSESSMENT

Variant Assessment

Single-
Channel

LOW
This architecture is obviously very sensitive to single points of failure. To
make it somewhat resilient to such failures, several “internal” redun-
dancy measures will likely need to be installed in a detailed architec-
ture phase or even in an implementation phase, potentially in an ad-
hoc way. This makes it harder to verify their sufficiency and completen-
ess.

Majority Voting

LOW
While this architecture with homogeneous channels addresses random
HW faults well, it is susceptible to common cause failures, as the
complex AD algorithms will not usually be suitable for full ASIL D
development. Conversely, heterogeneous channels are not suitable for
voting, as channels might each exhibit different (but valid) driving
policies, and therefore a faulty channel might not be identifiable. This is
especially true for the practical case of 2oo3 (TMR), where the problem
is likely not solvable.

Cross-
Checking
Pair

MEDIUM
This architecture can only properly deal with failure modes that can be
detected via a cross-check with another channel (e.g., FuSa faults).
However, in the general case, a single fault can lead to an irresolvable
conflict which leads to resorting to a pre-planned MRM, which would
only be acceptable for very rare fault combinations.

Daruma

MEDIUM
This architecture does not exhibit any obvious single point of failure. It
relies on three diverse channels to reduce common cause faults, though
this can be harder to achieve if the roles of all channels are similar, e.g.,
providing similar functionality. It relies on an independent subsystem
performing cross-checks to arbitrate between channels. However, a
failure of this subsystem can immediately lead to a severely degraded
MRM.

Channel-Wise
DCF

HIGH
This architecture exhibits no obvious single point of failure (provided
that the D-System is implemented in a fault-tolerant way) and due to the
asymmetric approach, with its diversity of the channels, also has a high
potential to rule out common cause faults.

144 www.the-autonomous.com

CONCLUSION:
For the reference AD use case of an SAE L4 Highway Pilot, the Channel-Wise DCF and the
Layer-Wise DCF seem to be the architectures of choice from an availability point of view. DSM
is considered problematic due to its common cause failure sensitivity. Majority Voting is consi-
dered highly problematic (if not unsuitable) in the practical case of non-deterministic channels.
Single-Channel is considered unsuitable.

Variant Assessment

Layer-Wise
DCF

HIGH
This architecture can rely on its Primary and Safing channels plus the
MSTOP (blind stop) capability. However, the published description
suggests potential single points of failure that would need to be
avoided, e.g., using the same occupancy grid in the primary and
secondary channels (whereas using that same input for the planners
and safety gates of each channel can be beneficial to avoid false
positives - if used correctly to restrict the planner’s decision space, not to
extend it). Also, the similar structure of the Primary and Safing channels
suggests sensitivity to common cause faults in the underlying
implementation, which would need to be avoided.

DSM

HIGH
This architecture is intended to support the availability KPI, due to its
multiple layers and redundancy mechanisms. It has some similarity to
the Channel-Wise DCF architecture but offers additional degradation
steps, giving in principle the potential for higher availability; in the
concrete implementation proposed, it does not have a clear separation
of the functional (FUN) and monitoring (SFM) channels, but implements
both within the same SOC and virtual machine, and seems therefore
highly sensitive to common cause faults. We consider this an
implementation aspect and therefore exclude it from our analysis.

AD-EYE

MEDIUM
This architecture does not exhibit any obvious single point of failure.
However, a failure of one of the subsystems in Channel 2 can in the
worst case lead to an in-lane emergency stop.

145www.the-autonomous.com

4.3.2.2 NOMINAL FUNCTIONALITY ASSESSMENT

CONCLUSION:
For the reference AD use case of an SAE L4 Highway Pilot, Majority Voting, Cross-Checking Pair,

Variant Assessment

Single-
Channel

MEDIUM
The resilience to functional deficiencies is not supported by any archi-
tectural measure but depends strictly on the internal implementation of
its subcomponents.

Majority Voting

LOW
This architecture can only provide high reliability if the output data
structures are easily comparable (ideally binary yes/no). In this case,
the similar capability level of each channel allows for full nominal
functionality. For more complex data structures (e.g., trajectories), the
voting process becomes prone to disagreement even without faults or
functional insufficiencies.

Cross-
Checking
Pair

MEDIUM
As both channels in this architecture are of similar capability level, the
rate of disagreements (false positives) could be lower than for
asymmetric architectures.

Daruma

HIGH
The degree of degradation in this architecture strongly depends on the
relative capability of the channels, i.e., from full nominal functionality
to degraded MRM. The ranking of channels can adapt quickly and
dynamically and choose the most appropriate channel for each
situation.

Channel-Wise
DCF

MEDIUM
The degree of reliability in this architecture depends on the concrete
capability level of its L2- and M-Systems, and on the parameterization
of the M-System (which initiates the potentially degraded mode of the
F-System), to not produce false positives. For the L2-System, being
aware of the limits that will be enforced by the M-System would be a
helpful addition to the architecture.

Layer-Wise
DCF

HIGH
The degree of reliability in this architecture depends on the concrete
capability level of its Primary channel and the monitoring subsystems
contained therein. To not produce false positives, it may foresee
precautions like restricting the primary’s decision space by the limits
imposed by the monitor (although this is not detailed in the published
description).

DSM
MEDIUM
The Distributed Safety Mechanisms architecture will provide high
reliability, due to its multiple and differentiated degradation steps.

AD-EYE

HIGH
This architecture allows for a gradual constraining of Channel 1 via
envelope feedback. The simpler Channel 2b is only used if Channel 1
isn’t available at all.

146 www.the-autonomous.com

Daruma, DSM, and AD-EYE seem to be the most capable architectures to sustain nominal func-
tionality. However, the latter can easily suffer from disagreements in the voting process. Chan-
nel-Wise DCF and Layer-Wise DCF can approximate this to some extent but will fall into degra-
ded mode more often (due to their focus on safety). Single-Channel does not support reliability
at the architectural level; it is strictly implementation-dependent.

4.3.2.3 CYBERSECURITY ASSESSMENT

CONCLUSION:
For the reference AD use case of an L4 Highway Pilot, Daruma, Channel-Wise DCF, and AD-
EYE have the highest resilience against cybersecurity attacks, followed by Layer-Wise DCF with
its higher exposure due to the larger number of safety gates. DSM seems to be more vulnerable
due to its high number of interactions and tightly coupled components. Majority Voting will be

Variant Assessment

Single-
Channel

LOW
This architecture is critical from a cybersecurity point of view, as its sin-
gle channel does not provide any architectural partitioning but expo-
ses its complete functionality to a malicious intruder.

Majority Voting

HIGH
In this architecture, the channels are highly separated and exchange
little (if any) information, and the voting component itself is expected to
be simple and well-separated. However, if the channels are imple-
mented homogeneously, it could be highly susceptible to exposing a
common vulnerability.

Cross-
Checking
Pair

LOW
In this architecture, almost all subsystems communicate with each
other. In addition, a successful attack on either one of the channels
would compromise the overall system.

Daruma
HIGH
In this architecture, the different subsystems are clearly separated, di-
verse, and (unidirectionally) exchange only small amounts of data.

Channel-Wise
DCF

HIGH
In this architecture, clearly separated components exchange only a
small amount of well-defined information and are highly diverse, po-
tentially avoiding common vulnerabilities. The (simple) decision logic
poses the only single point of attack.

Layer-Wise
DCF

HIGH
This architecture makes use of clearly separated components. Howe-
ver, a successful attack on one single (of several) safety gates would
compromise the overall system.

DSM

MEDIUM
This architecture seems to be more vulnerable from a cybersecurity point
of view, as its high number of interactions between subsystems and
(partly) missing separation might make it more exposed to attackers.

AD-EYE
HIGH
This architecture uses clearly separated components. The channels
could be updated independently from each other.

147www.the-autonomous.com

vulnerable in the case of homogeneous channels. Cross-Checking Pair suffers from similar pro-
blems as under the reliability KPI. Architecture-wise, Single-Channel does not provide any pro-
tection from cybersecurity threats.

4.3.2.4 SCALABILITY ASSESSMENT

CONCLUSION:
For the reference AD use case of an SAE L4 Highway Pilot, Majority Voting and Daruma seem

Variant Assessment

Single-
Channel

LOW
This architecture does not provide any scaling options.

Majority Voting

HIGH
This architecture appears to be highly scalable, as one of its channels
can be used to downscale to an SAE L2 system or could be derived by
extending an existing L2 system. Likewise, it could be upscaled by ad-
ding more channels.

Cross-
Checking
Pair

LOW
While this architecture could technically be extended with more chan-
nels, this would also have an impact on existing channels. This is due
to the fact that the cross-checks are integrated in the channels, which
also makes re-use as an SAE L2 system more difficult.

Daruma

HIGH
By design, this architecture is intended to be highly scalable. Existing
SAE L2 systems can be re-used as channels by only adding a few stan-
dardized interfaces. More channels can also be added without chan-
ging existing channels as the cross-checks are performed in the dedi-
cated Daruma subsystem.

Channel-Wise
DCF

MEDIUM
The main component of this architecture (L2-System) can be used to
downscale to an SAE L2 system or could be derived by extending an
existing L2 system.

Layer-Wise
DCF

MEDIUM
The primary components of this architecture can be used to downscale
to an SAE L2 system or could be derived by extending an existing L2
system.

DSM

HIGH
Some of the components of this architecture may be derived by exten-
ding an existing SAE L2 system. It is not obvious, however, how it could
be downscaled to an L2 system by essentially just removing L4-related
components. It could be upscaled to L5 by adding FUN/SFM com-
ponents, but its VSM would need to be substantially extended.

AD-EYE

MEDIUM
Significant modifications, e.g., to support envelope feedback, would
be necessary to reuse an existing L2 system as a subsystem within this
architecture. Scaling to higher availability would require adding inter-
nal complexity to Channel 1 or duplicating it with some additional deci-
sion logic.

148 www.the-autonomous.com

to be the best options to both downscale to L2 or upscale to L5. Channel-Wise and Layer-Wise
DCF seem to provide good capabilities to downscale to an L2 system or leverage L2 system
developments, whereas DSM seem to be a better fit for upscaling to an L5 system. AD-EYE re-
quires some significant modifications to scale, while Cross-Checking Pair requires many. Finally,
Single-Channel does not support scaling at all.

4.3.2.5 SIMPLICITY ASSESSMENT

Variant Assessment

Single-
Channel

LOW
This architecture superficially seems to be simple, but its monolithic ap-
proach and lack of clearly separated subsystems will lead to high
complexity and effort for implementation, verification, and validation.

Majority Voting

LOW
The regular structure of this architecture implies simplicity. However,
each individual channel might have similar properties to the Single-
Channel architecture, with comparable consequences for implementa-
tion and verification efforts. Relaxation on the individual channels due
to the subsequent voting might be offset by efforts to identify faulty
channels correctly. This might be a challenge for the system integrator,
and for 2oo3 (TMR) as a practical option, it is questionable whether
this can be solved at all.

Cross-
Checking
Pair

HIGH
This architecture has fewer subsystems than most other architecture
candidates, although both of its channels have similar functional ca-
pability. The cross-check between them may complicate independent
development and verification.

Daruma

MEDIUM
The subsystems in this architecture are not directly coupled, which can
facilitate independent development and verification. The implementa-
tion effort strongly depends on the relative functional capability of the
channels, e.g., whether more than one of them provides the full nomi-
nal functionality, which can be costlier than asymmetric architectures.

Channel-Wise
DCF

HIGH
This architecture is conceptually simple, as its clearly separated com-
ponents with distinguished purposes and well-defined message ex-
change enable modular, separate development and simpler overall
safety assessment. The L2-System will be the most complex component,
but less effort than one of the Majority Voting’s channels, due to the
highly diverse M-System supervision. Efforts for the system integrator
seem to be reasonable.

Layer-Wise
DCF

MEDIUM
This architecture has clearly separated components with distinguished
purposes and well-defined message exchange, but the higher number
of components and level of information exchange (compared to the
Channel-Wise DCF) will increase the burden on the system integrator
and complicate overall safety assessment. On the other hand, the
layered approach might enable a more modular, separate develop-
ment.

149www.the-autonomous.com

CONCLUSION:
For the reference AD use case of an SAE L4 Highway Pilot, Cross-Checking Pair, Daruma, Chan-
nel-Wise DCF, Layer-Wise DCF, and AD-EYE seem to be preferable with respect to simplicity,
i.e., reasonable integration and validation efforts. DSM is highly complex, especially for the sys-
tem integrator. Majority Voting seems simple, but the individual channels’ complexity is high, as
is their integration in the case of heterogeneous channels. Single-Channel is superficially the
simplest but is expected to require high verification and validation efforts.

4.3.2.6 SOTIF ASSESSMENT

Variant Assessment

Single-
Channel

LOW
Due to its monolithic nature, this architecture is obviously very sensitive
to functional deficiencies and to deviations from the nominal conditi-
ons, especially since it will need to rely on machine learning to achieve
the performance goals and there is no visible means of supervision or
diversity.

Majority Voting

LOW
If homogeneous channels are used in this architecture, it is susceptible
to common cause failures by functional deficiencies or deviations from
the nominal conditions. Conversely, heterogeneous channels are not
suitable for voting, as channels might each exhibit different (but valid)
driving policies, and therefore a faulty channel might not be
identifiable. This is especially true for the practical case of 2oo3 (TMR),
where the problem is likely not solvable.

Cross-
Checking
Pair

HIGH
The two channels in this architecture can compensate for each other’s
weaknesses, specifically combined with diversity. Some complex
situations may still lead to a conflict and deadlock.

Variant Assessment

DSM

MEDIUM
The FUN, SFM, CSM, and the VSM modules of the Distributed Safety
Mechanisms are separated, enabling separate development and veri-
fication, but interact in complex and highly diverse ways, thus putting a
high burden on the system integrator and complicating the overall safe-
ty assessment.

The proposed architecture also mixes functional aspects (FUN, SFM,
VSM) with system integrity aspects (CSM) and implementation aspects
(middleware, virtual machine) – it will thus be critical to decompose and
assign the required system properties to the entities of the architecture in
a clear, consistent, and complete way.

AD-EYE

HIGH
This architecture is conceptually very simple. It consists of two diverse
channels with distinct roles. One of these comprises two subsystems
that share perception components, minimizing implementation and
production cost.

150 www.the-autonomous.com

CONCLUSION:
For the reference AD use case of an L4 Highway Pilot, the Daruma, Channel-Wise DCF, the
Layer-Wise DCF, DSM, and AD-EYE are the architectures of choice from a SOTIF point of view.
Majority Voting is highly problematic (if not unsuitable) in the case of heterogeneous channels,
as correct voting cannot be ensured. Majority Voting with homogeneous channels and the Sin-
gle-Channel architecture are highly sensitive to functional deficiencies and off-nominal condi-
tions, and therefore likely unsuitable.

Variant Assessment

Daruma

HIGH
This architecture explicitly foresees that channels may each focus on
particular driving situations and compensate for each other’s
weaknesses. This may also allow it to address deviations from the
nominal conditions.

Channel-Wise
DCF

HIGH
This architecture exhibits a natural diversity between the L2-System
and the M-System. The F subsystem (being explicitly foreseen for out-
of-ODD operation) is likely implemented very differently from the L2-
System. This architecture also quite naturally manages changes to the
nominal conditions.

Layer-Wise
DCF

HIGH
This architecture employs multiple checkers and safety gates both on
its primary and secondary channels, promoting modularity and diversi-
ty, which also has a positive impact on development and V&V. It may
be capable of addressing deviations from the nominal conditions well,
but this seems not to be explicitly foreseen.

DSM

HIGH
This architecture highly promotes SOTIF, due to the different functions
performed by its FUN, SFM, and VSM modules. Management of off-no-
minal conditions is also explicitly foreseen.

AD-EYE

HIGH
This architecture employs two diverse channels with independent, di-
verse perception stacks such that they can compensate for each other’s
functional insufficiencies.

151www.the-autonomous.com

4.3.3 EVALUATION SUMMARY
Table 24 summarizes the evaluation findings, i.e., whether and how well the criteria are sup-
ported by the respective candidate architectures. It should be noted that this evaluation is only
qualitative, i.e., these are not scores and should not be overinterpreted or summed up.

Table 24: Summary of the specific evaluation.

Availability Nominal
Functionality Cybersecurity Scalability Simplicity SOTIF

Single-
Channel

LOW
Not
supported

MEDIUM
Higher inter-
nal comple-
xity and no
backup to
support de-
gradations

LOW
Not
supported

LOW
Not
supported

LOW
High inner
complexity

LOW
Not
supported

Majority
Voting

LOW
Disagree-
ments bet-
ween chan-
nels can be
problematic

LOW
Voting can
lead to more
problematic
disagree-
ments

HIGH
Limited in-
teractions

HIGH
Omit / add
channels to
scale

LOW
Simple ar-
chitecture,
complex
channels

LOW
Not
supported
due to
homoge-
neous ar-
chitecture

Cross-
Checking
Pair

MEDIUM
Disagree-
ments bet-
ween chan-
nels can
lead to pre-
planned
MRM

MEDIUM
Reasonable
reliability

LOW
Strong coup-
ling between
channels

LOW
Some re-
use possi-
ble

HIGH
Simple ar-
chitecture;
fewer chan-
nels

HIGH
Structure
supports
SOTIF

Daruma

MEDIUM
Non-redun-
dant che-
cking sub-
system can
be proble-
matic

HIGH
Multiple ran-
ked chan-
nels can
provide no-
minal functi-
onality

HIGH
Limited in-
teractions

HIGH
Omit / add
channels to
scale

MEDIUM
Simple ar-
chitecture;
channel
complexity
implementa-
tion-specific

HIGH
Structure
supports
SOTIF

Channel-
Wise DCF

HIGH
Concept fo-
cuses on
availability

MEDIUM
Reasonable
reliability;
implementa-
tion-depen-
dent

HIGH
Diverse struc-
ture with high
resilience

MEDIUM
Omit chan-
nels to
downscale
to L2

HIGH
Simple ar-
chitecture;
low required
channel
complexity

HIGH
Structure
supports
SOTIF

152 www.the-autonomous.com

In general, we find that asymmetric architectures (Channel-Wise DCF, Layer-Wise DCF, DSM,
and AD-EYE) are better suited than symmetric ones (Single-Channel and Majority Voting) for
the complexity in Automated Driving. The Cross-Checking Pair and Daruma architectures, while
technically symmetric, can also be constructed with rather different channels and resemble the
asymmetric architectures.

Their quite naturally independently developed and complementary channels can compensate
for each other’s weaknesses, compared to the essentially identical or potentially even monoli-
thic implementations of symmetric architectures.

The asymmetric architectures basically employ two design patterns and combine them in diffe-
rent ways:

• Doer / Checker: One subsystem performs the function, the other one monitors it.

• Active / Hot Stand-By: One subsystem is active, and the other is on stand-by; if the active
is unavailable or unsafe, the stand-by takes over.

A combination of these patterns allows for a sound partitioning into modules with simple and
purposeful interfaces that can be independently verified and whose integration is straightfor-
ward and readily verifiable. Also, these patterns lead to a limited, well-arranged and predic-
table number of system states under both nominal and off-nominal conditions. A solid and ve-
rifiable safety argumentation can then be constructed systematically based on the individually
developed modules and their successful integration.

Availability Nominal
Functionality Cybersecurity Scalability Simplicity SOTIF

Layer-
Wise DCF

HIGH
Concept fo-
cuses on
availability;
risk of single
point failu-
res

HIGH
Reasonable
reliability;
with precau-
tions by ar-
chitecture

HIGH
Diverse struc-
ture, but mul-
tiple single-
attack points

MEDIUM
Omit chan-
nels to
downscale to
L2

MEDIUM
Structured,
medium
complexity
architec-
ture; more
channels

HIGH
Structure
supports
SOTIF

DSM

HIGH
Sensitivity to
common
cause failu-
res

MEDIUM
Reasonable
reliability
with diffe-
rentiated
degradation
steps

MEDIUM
Diverse struc-
ture, but
complexity
might expose
vulnerabili-
ties

HIGH
Downscaling
to L2 not
straightfor-
ward, but po-
tential to ups-
cale to L5

MEDIUM
High
complexity
for the inte-
grator

HIGH
Structure
supports
SOTIF

AD-EYE

MEDIUM
Failure in
Channel 2
can in the
worst case
lead to in-
lane stop

HIGH
Gradual de-
gradation
possible via
envelope
feedback

HIGH
Diverse struc-
ture with
high resili-
ence

MEDIUM
Some signifi-
cant modifi-
cations ne-
cessary to
scale

HIGH
Simple ar-
chitecture
with mini-
mal dupli-
cation of
functionality

HIGH
Structure
supports
SOTIF

153www.the-autonomous.com

5 IMPLEMENTATION
CONSIDERATIONS
The implementation of the AD Intelligence’s conceptual system architecture is embodied in con-
crete HW and SW architectures. The following section collects implementation considerations
for the process of mapping conceptual architectures to such more detailed designs. Sections 5.1
and 5.2 summarize considerations related to HW and SW, respectively. The design and imple-
mentation must follow applicable standards, summarized in section 5.3, and satisfy the general
requirements listed in section 2.2, prominently among them sufficient independence, which is
discussed in more detail in section 5.4. Finally, surrounding systems (see section 1.2) also need
to be considered, but this goes beyond the scope of this document.

5.1 HW CONSIDERATIONS
In this section, a short introduction to some aspects of HW refinement of the conceptual system
architecture is given. This is not a complete list of aspects.

5.1.1 HIGH AVAILABILITY AND VEHICLE OPERATING STATES
Architectures in the Automated Driving (AD) context in general should not limit their functiona-
lity to a dedicated vehicle operating state (like parking, standing still, driving slowly etc.), but
should work in fault-free condition in all vehicle states. But the loss of the functionality can lead
to a hazardous event only in specific vehicle operating states. One valid approach for degra-
dation of Automated Driving functionality is to change the operating state to lower severity or
exposure, for instance by lowering the vehicle speed in a controlled way. In this context, please
check ISO 26262-10:2018 §12.

Emergency operation exposure time as reaction to a fault should be limited if the ASIL capability
of the item is lower than the ASIL rating of the possible hazard. If after the occurrence of the
fault, the vehicle operating states are not changed, then the ASIL is the same as that derived
from the HARA and no ASIL decomposition of main path and a potential redundant path is
allowed.

For redundant paths, a dependent failure analysis should be executed to find and eliminate
common cause initiators.

5.1.2 COMMON CAUSE INITIATORS
ISO 26262:2018-9 §7 requires assessment of Common Cause Initiators (CCI):

a. Random HW faults
Many of the system architectures use redundant channels to mitigate random HW faults in
one channel by providing the same function in the redundant channel. There is a very
small chance that in the Safety Goal-relevant time interval a random HW fault is detected
in the redundant channel as well. A good strategy to treat this case is to use diverse con-
figurations of fault reactions in the first and redundant channel.

b. Development faults
Those are covered by ASIL D development process, requirement-driven development flow
and tool chain qualification process. A Development Process Documentation (DPD) can
provide information related to the following topics:

154 www.the-autonomous.com

i. Development Process

ii. Development Environment

iii. Requirement Management

c. Manufacturing faults
The manufacturer should monitor the compliance with the related standards, e.g., by Au-
dits, Production Assessment and Process FMEA activities. Particular focus should be put on
the verification by testing of characteristics determined by analogue circuitries, including
in quasi-digital parts such as memory. ISO/TS16949 certificates should be provided by all
manufacturing sites documenting process compliance. An ISO 9001 certificate covers all
sites, locations and organizational units of a manufacturer. TS16949 certificates cover all
production sites, headquarters, automotive design centers, and sales. AS 9100 certificates
cover production sites in America.

The Production Part Approval Process (Produktionsteil-Abnahmeverfahren, PPAP) [AIAG] is
comparable to the PPA Production Process and Product Approval (PFF Produktionspro-
zess- und Produkt- Freigabe) [VDA]. Both procedures are reflected in the ZVEI PPAP
Guideline. The Automotive Industry Action Group (AIAG) has developed a common PPAP
standard as part of the Advanced Product Quality Planning (APQP) to use a common ter-
minology and standard forms to document project status. Companies may have their own
individual requirements. PPAP is the documentation (snapshot) of the current state of the
product design, functionality, and reliability as well as the production processes used.

d. Installation faults + e. Repair faults
This CCI category shall be mainly addressed by OEM and TIER1 suppliers. The guidance
given by suppliers in their user manuals and safety application guidelines shall be
obeyed.

f. + h. Environmental factor incl. stress
The prototypes and series components of ADS should be subject to Environmental Stress as
defined by semiconductor standards and by the automotive industry, such as AEC-Q100.
OEM and their TIER1 suppliers shall analyze the potential impact on their diversity claim.

g. Common external resources
The functional safety of external resources, such as power supply, debug support and
communication interfaces shall be analyzed for potential common causes to redundant
channels.

5.1.3 CLOCK, POWER, RESET, DEBUG, AND TEST FAILURES
Infrastructure functions in Automated Driving systems are typically common cause initiators on
the hardware level.

The clock configuration of an automated driving system is defined during the development
phase and is usually static during runtime. Therefore, any systematic failure affecting its functi-
onality or monitoring capability is assumed to be found during integration verification. A diverse
crystal oscillator type or PCB layout for redundant and diverse paths can reduce dependent
failures. Diverse configuration settings of clock upscaling and distribution can reduce depen-
dent failure.

Systematic faults in power supply circuits can affect the voltage regulator characteristic. Extre-
me corner cases (which could escape system validation) are unlikely to happen identically in

A Quality Process Documentation (QPD) can provide references to cover various quality
management and production-related topics. Both contribute to Quality Process
Management with the goal of providing the best avoidance of systematic development
faults.

155www.the-autonomous.com

redundant and diverse paths for an Automated Driving system.

During the operation of an Automated Driving system, a reset of hardware components can be
used as a reaction to detected faults, but also has a high impact on the availability of the sys-
tem. Reset as failure reaction should be used only for failures which cannot be handled other-
wise. A diverse configuration of all reset sources (especially fault reaction) can reduce depen-
dent failures. Under certain conditions, the redundant (hot standby) path can be configured to
ignore all reset sources (in the case of a fault detected in the active path).

Debugging is meant to be used during SW development only, therefore its systematic failures
do not affect the functionality of the Automated Driving system during runtime. During safety
application, all debug functionality should be disabled. The only remaining systematic faults
could result from SW activation with critical failure mode “unintended debug”. Diverse SW im-
plementation can reduce dependent failure (e.g., redundant path without any debug SW parts
compiled).

Test functionalities based on Built-In Self-Test (BIST) are executed during startup only, therefore
its systematic failures do not affect the functionality of the Automated Driving system during run-
time. During safety application, all test functionality should be removed. Only remaining syste-
matic faults could result from SW activation with critical failure mode “unintended test”. Diverse
SW implementation can reduce dependent failure (e.g., redundant path without any test SW
parts compiled).

5.2 SW CONSIDERATIONS

This section contains some selected topics to consider when analyzing the system architecture
towards further refinement of the technical aspects at the software level.

5.2.1 SOFTWARE ARCHITECTURAL STYLES
The main aspect to consider is the software architectural design itself. An exhaustive descripti-
on of software architecture styles (e.g., layered, monolithic, microkernel, pipes and filters, cli-
ent-server, publisher-subscriber, event-driven) and their applications is beyond the scope of
this report, but we can recommend using [64] to get a good overview. Furthermore, this report
does not address how safety measures are appropriately integrated into such software archi-
tectures.

Regardless of the choice of architectural styles for individual software elements, there are com-
mon safety measures, which are listed in the following non-exhaustive list:

• Graceful degradation behavior by ensuring that there is no single point of failure, especi-
ally for middleware and service-oriented software components.

• Error detection and handling mechanisms, as described in ISO 26262 [2] Parts 6 and 10, as
well as the capability to store diagnostic data.

• Use of adequate programming languages and techniques, including the application of
design and coding guidelines, such as MISRA C, AUTOSAR C++, CERT.

• Performing architecture analysis, such as Failure Modes and Effects Analysis (FMEA) and
Architecture Trade-off Analysis Method (ATAM) [64].

• Evaluation and optimization of metrics related to the quality aspects of the architecture
(e.g., complexity, dependencies, stability of code and interfaces).

An important aspect to mention here is the shift from federated to centralized architectures in

156 www.the-autonomous.com

automotive systems. In such centralized architectures, the software is executed redundantly
using the mechanisms of virtualization and containerization (i.e., with hypervisors coordinating
resources and virtual machines processes). Consequently, the system is more flexible and hard-
ware costs can be reduced. On the other hand, distributing processes to virtual machines
brings some challenges in terms of integration and testing, as well as cybersecurity.

5.2.2 PROPERTY OF TECHNICAL INDEPENDENCE
As stated in ISO 26262 [2] Part 9, to achieve technical independence between components of
the system, cascading and common cause failures that compromise a safety requirement shall
be avoided. While the factors listed in 5.1.2 apply to hardware, similar classes of coupling fac-
tors shall be considered for software elements:

• Shared resources, e.g., use of identical software modules without further independence
measures, use of mathematical or other software libraries.

• Shared information input, e.g., global variables, data or messages used by more than one
software element.

• Systematic coupling, e.g., same software tools, same programming or modeling langua-
ge, reuse of assumptions and requirements for different software implementations.

• Components of identical type, e.g., same source code generated twice.

• Communication, e.g., global variables, messaging, function calls with arguments passed.

• Unintended interface, e.g., same memory space.

5.2.3 SOFTWARE REUSE
Reusable software (e.g., third party software, libraries, FOSS) can significantly reduce the de-
velopment effort for AD systems. Variant management, software configuration and the integra-
tion into different architectures are aspects that need to be done carefully to avoid dependabi-
lity issues.

In addition to the requirements and recommendations for the development of SW-SEooCs and
the qualification of software components contained in ISO 26262 [2] Parts 8 and 10, there are
new standardization efforts that complement these and provide further guidance:

• ISO/PAS 8926:2024 Road vehicles – Functional safety – Use of pre-existing software archi-
tectural elements [65].

• Public initiatives such as the project Enabling Linux in Safety Applications (ELISA) [66].

5.2.4 SOFTWARE UPDATES
With the move to software-defined vehicles, architectures of AD systems must ensure regular,
continuous updates of software elements in a safe manner for the long term, including over-
the-air (OTA) ones. This capability is closely related to quality aspects such as modularity, mo-
difiability, portability, extensibility, and verifiability, along with the challenge of additional
safety and cybersecurity risks (e.g., risks associated with the use of cloud services).

To standardize the software update engineering process, ISO 24089 [67] has been recently pu-
blished. It contains requirements and recommendations on planning, risk management, V&V,
deployment, and monitoring of software updates, but does not include specific technologies or
solutions.

157www.the-autonomous.com

5.2.5 REAL-TIME OPERATING SYSTEMS (RTOS) AND MIDDLEWARE
The software responsible for providing basic services and interfacing the software applications
with the hardware (i.e., the electronic buses, CPUs, and ECUs) requires a high level of integrity.
The well-known standard AUTOSAR (AUTomotive Open System Architecture) [68] has been lar-
gely used in its original version (i.e., Classic Platform) as the basis for traditional automotive func-
tionalities such as engine control and transmission. For AD systems, however, more complex soft-
ware applications and high-performance computations are to be supported. Thus, a middleware
based on the new AUTOSAR Adaptive Platform includes advanced functionalities, such as:

• Runtime configuration

• OTA software updates

• Ethernet inter-ECU communication for the transmission of large data

• High-performance hardware

• Service-oriented communication

• Compatibility with other operating systems (e.g., Linux, Android)

Other capabilities that go beyond the AUTOSAR Adaptive standard might be required, for ex-
ample scheduling and real-time guarantees for event chains across complex, multi-partition or
multi-SOC architectures.

5.2.6 MACHINE LEARNING AND DATA-DRIVEN APPROACHES
The use of machine learning (ML) in the automotive industry was essentially introduced to ad-
dress the challenges of the perception tasks (e.g., object recognition, pedestrian detection,
signs recognition, road intersection detection). While the neural network model used might play
a relevant role to ensure safe outputs, the performance of ML-based software depends mostly
on data engineering aspects. Typical issues to avoid during development of such software are:

• Bias in data collection

• Patterns of mislabeling in training data

• Poor design of experiments for simulation validation

Another important aspect is the potentially non-deterministic behavior of ML-based software due to
the inclusion of stochastic aspects in the training process or the concrete implementation. Architec-
tures that integrate ML-based software require safety mechanisms such as redundancy and plausi-
bility checks (e.g., safety wrappers) which make them more complex. In general, analyzing reliabi-
lity- and safety-related failure modes and mitigating them with appropriate error detection and
handling mechanisms is one of the key challenges for ML-based software. ISO/IEC TR 5469 and
ISO/PAS 8800 address the safety of AI and are discussed in sections 5.3.5 and 5.3.6, respectively.

5.2.7 DATA MANAGEMENT
In addition to the safety implications of data-driven approaches in the context of ML, other
aspects related to data management also require decision-making at the architecture and im-
plementation level. Some safety aspects related to data management are:

• Data and software configuration management (e.g., to support variant management and
software updates).

• Assuring safety of internal-to-vehicle data management (e.g., internal maps used for ve-
hicle localization are uncorrupted and of a compatible version).

• Integrity of collecting, storing, and transmitting engineering field feedback data, including
safety performance indicators.

158 www.the-autonomous.com

5.2.8 TOOL QUALIFICATION
Tool evaluation and qualification processes are described in ISO 26262 [2] Parts 8 and 10. Due
to the increasing complexity of the software development environment and the technologies
used, the topic has become crucial. Continuous Integration (CI), static and dynamic code ana-
lysis, testing and simulation tools, model-based code generation, documentation generation:
essentially all software engineering processes are becoming automated. While this is necessa-
ry to manage development and maintenance efforts, challenges arise from increasing reliance
on the tool chain and infrastructure, with all the associated risks related to troubleshooting, cy-
bersecurity, privacy, and safety.

To the degree that simulation is used to supplant vehicle testing, tool qualification of simulati-
ons, simulation models, and simulation orchestrators will become more critical. The same app-
lies to the tools needed to mitigate the risk of data bias, inaccurate data labels, and data cor-
ruption in such simulation-based validations.

From a system architecture point of view, the use of different tools for redundant subsystems may
be necessary to rule out systematic coupling of failures due to malfunctions of the tool.

5.2.9 CRYPTO AGILITY
Crypto primitives such as ciphers or hash functions are built on the hardness of certain mathe-
matical problems. When such hardness is broken, e.g., for SHA1, it becomes necessary that
crypto primitives be replaced with appropriate ones that still have the required hardness. The
main focus thus far has been on providing such hardness resistant to classical computers. With
the advent of quantum computers, it is now expected that within 20-25 years the capability to
break certain problems such as integer factorization or discrete logarithm problems will be
available.

Asymmetric key cryptographic algorithms such as Rivest-Shamir-Adleman (RSA) and Elliptic
Curve Cryptography (ECC) can be broken in polynomial time on a quantum computer due to
Shor’s algorithm. Moreover, symmetric key cryptographic algorithms such as AES-128 could
have reduced security due to Grover’s algorithm. This can be mitigated by increasing the key
length, e.g., AES-256.

For automotive systems this has an impact on functionalities such as software updates done
either via over-the-air or through diagnostic systems. The verification of software updates is ge-
nerally done using digital signatures based on asymmetric key cryptography. Software updates
are also crucial for safety and nominal functionality of the system. Hence it is imperative to have
methods for verifying software updates such that overall system integrity is maintained. Moreo-
ver, any potential compromise of the software update process would also have an impact on
the resilience of the vehicle architecture – opening up further opportunities for security compro-
mise regardless of the employed design.

NIST initiated a competition in 2017 to discover algorithms that are resistant to attacks employ-
ing a quantum computer. The finalized set of Post Quantum Cryptography (PQC) algorithms
from NIST that need to be supported are shown in Figure 56.

159www.the-autonomous.com

 Final schemes: algorithms to be standardized
 NIST round 4 reached

Figure 56: New algorithms in Post Quantum Cryptography (PQC).

With new PQC algorithms come new challenges for integration in use cases (e.g., secure boot,
software update) and protocols (e.g., TLS). PQC algorithms are not drop-in replacements; rat-
her they need systematic engineering to mitigate potential challenges of signal processing and
increased memory consumption. This would mean changes to the hardware and software eco-
system to meet real-time platform requirements.

The evaluation of PQC underscores the importance of 'Crypto Agility', which enables the seam-
less exchange of cryptographic algorithms on hardware and software platforms without com-
promising the quality of service for road vehicles. The definition and requirements of Crypto
Agility can vary depending on the perspective, encompassing solutions such as flexible hard-
ware capable of running or accelerating multiple cryptographic algorithms, as well as generic
and configurable cryptographic protocols or applications.

With strong type approval requirements from UNECE R155 and R156 [69] [70], it becomes even
more evident to have hardware trust anchors that support the feature of crypto agility both for
classical and post-quantum crypto algorithms in road vehicles.

5.2.10 OPEN-LOOP
At first glance, the processing chain within the ADI seems linear, often progressing from a per-
ception layer via a sensor fusion layer to a planning layer. The performance of some of these
layers can be improved by awareness of the actuator commands that will be executed in the
next timestep. The perception and sensor fusion layers can benefit from anticipating how ob-
jects are likely to shift relative to the ego vehicle and the planning layer can better anticipate
how other traffic participants will react.

We denote a system or subsystem that is in control of the vehicle as running “closed-loop”, i.e.,
its outputs directly affect the environment and therefore also the sensor inputs it will receive in
the future. In contrast, a system or subsystem that is not in control of the actuators is running
“open-loop”.

Conceptual system architectures that consist of multiple channels involve some mechanism for

160 www.the-autonomous.com

switching between the currently active channel and a channel running in hot stand-by. Such a
switch is not trivial: to allow for accurate execution, the “new” trajectory needs to continue
smoothly from the “old” trajectory, i.e., first and second order derivatives (speed and accelera-
tion) need to match, and the third order derivative (jerk) needs to be small. In practice, this may
involve carrying over some trajectory points from the “old” trajectory. This poses additional cons-
traints on the channel running open-loop in hot stand-by and slows down a potential emergen-
cy reaction. It should be noted that all AD systems need to be capable of running open-loop to
a certain extent, e.g., to cover the time span between their activation and engagement.

Symmetric conceptual system architectures often allow rapid back-and-forth switching bet-
ween different channels, i.e., for each situation the best-suited channel controls the vehicle.
Asymmetric conceptual system architectures, on the other hand, are sometimes restricted to a
one-way switch, i.e., only from a nominal channel to a fallback channel. Comfort is of seconda-
ry importance for an MRM, so the burden of running open-loop is less pronounced here.

5.2.11 COLD AND HOT STAND-BY
If a conceptual system architecture consists of more than one channel, all but the currently acti-
ve channel are on stand-by (see also section 5.2.10). All architectures considered in this report
use hot stand-by (see also section 3.2.1.3), where inactive channels continuously run open-loop.
This ensures that there is no interruption of service if a change of the active channel occurs.

Theoretically, conceptual system architectures could also incorporate warm or cold stand-by.
These come with the trade-off of reduced power consumption, but worse availability due to
needing some time to become fully operational and being capable of performing the Dynamic
Driving Task (DDT). For complex ECUs involved in the ADI, a cold start can take up to several
seconds and not only includes HW initialization and boot-up, but also synchronization between
multiple ECUs and establishing a converged environment model over several sampling frames.
The latter would remain a potential problem even if such an ECU is already booted but idle;
therefore, we do not consider warm or cold standby a viable solution in our context.

5.2.12 FORESEEABLE MISUSE
For SAE L2 systems the driver holds all responsibility for the vehicle. As this is part of the safety
analysis and argumentation, suitable measures are necessary to prevent foreseeable misuse,
e.g., the driver turning to other activities, falling asleep, or leaving the driver’s seat. While for
SAE L3 and higher systems the vehicle temporarily assumes responsibility for the Dynamic Dri-
ving Task (DDT), certain assumptions regarding the primary passenger remain important to the
safety argumentation. For SAE L3 systems, the DDT Fallback is most prominent. However, there
are also safety aspects not directly related to the DDT, e.g., ensuring orderly behavior of other
passengers, a proper vehicle state (closed doors, nothing sticking out of windows, etc.), or re-
suming the drive from a minimal risk condition after the AD system fails and executes an MRM53.

A Driver Monitoring System (DMS) can be used to ensure that the condition of the driver matches
the underlying assumptions of the AD system, e.g., driver is not asleep, not incapacitated and in
general ready to take over the vehicle if requested by the system to do so. If the DMS detects a
violation of an assumption, it can at first try to remediate it by alerting the driver, and – if the driver
still does not respond appropriately – trigger a system reaction, which may include the following:

• DMS alerts the Diagnostics System.

53 An SAE L4 system does not rely on the primary passenger (driver) taking over quickly after a failure or ODD exit occurs. However, depending on
the minimal risk condition it manages to enter after completing the MRM (e.g., pulling over to the side of the road or coming to a stop in-lane), it
may require someone to resume driving, move the vehicle to a permanently safe location, or put up warning signs. Some of these activities may be
incompatible with the driver falling asleep while the AD system is active.

161www.the-autonomous.com

• Diagnostics System requests one or more subsystems of the ADI to enter a degraded mode
(e.g., pull over). This may involve a degraded mode that prevents continuation of the no-
minal function.

We assume that any system (even the Single-Channel architecture) will include functionality to
prevent or react to foreseeable misuse, and hence see no impact of this functionality on the
conceptual architecture.

5.3 STANDARDS FOR DEVELOPMENT OF SAFE AD
SYSTEMS

5.3.1 APPLICABLE SAFETY STANDARDS
With respect to safety, the primary relevant standards are ISO 26262 (Functional Safety) [2] and
ISO 21448 (Safety of the Intended Functionality) [3], which should be followed throughout the
development of an AD system. Although compliance with those standards is not a formal (legal)
requirement for vehicle homologation, they are considered “state of the art” (also in a legal
sense) and therefore most OEMs adhere to them in their development processes and prescribe
them to their suppliers.

Additional standards that are intended to be used to support the development of AD systems
are ISO/TS 5083 (“Road Vehicles – Safety for automated driving systems – Design, verification
and validation”) [71] and UL 4600 (“Safety for the Evaluation of Autonomous Products”) [22]. As
AD systems very likely will contain elements of or even largely be based on artificial intelligence
(AI), recently published standards like ISO TR 5469 (“Artificial intelligence – Functional safety
and AI systems”) [72] and ISO 8800 (“Road Vehicles — Safety and artificial intelligence”) [73]
should be considered too.

Finally, the UNECE Regulation No. 157 (“R157”) [74] [75] is relevant for type approval of vehicles
incorporating “Automated Lane Keeping Systems” (ALKS, essentially Highway Pilot-like functi-
ons) in a large number of countries and as such needs to be considered when developing AD
systems to be deployed e.g., in the European Union.

In the following subsections, we summarize the architectural impact of each of those standards,
i.e., how architectural considerations are either prescribed by the standards or how an appro-
priate architecture choice can help achieve standards compliance.

5.3.2 ISO 26262 (FUNCTIONAL SAFETY) CONSIDERATIONS FOR THE ADI IMPLEMENTATION
ASIL ASSIGNMENT
It is safe to assume that an AD system for an L4 Highway Pilot will get the ASIL D level assigned, as all
three relevant factors will contribute and lead to this highest classification in terms of ISO 26262 [2]:

• Severity will be S3 (highest), as a malfunction of the AD system during autonomous opera-
tion can lead to a fatal crash.

• Exposure will be E4 (highest), as autonomous operation on a highway will be very com-
mon for a vehicle equipped with a Highway Pilot system.

• Controllability will be C3 (highest), as a malfunction while in autonomous operation will
not be controllable by the passengers (would require an immediate attention shift and
takeover by the “driver”)54.

54 Note that ISO 26262 refers to “the driver or other persons involved in the operational situation” for classifying the Controllability. Strictly speaking,
there is no “driver” for an L4 function, but we apply the definition analogously, because for a Highway Pilot we still assume a person present in the
driver’s seat, who needs to control the vehicle anyway until highway entry and after highway exit.

162 www.the-autonomous.com

For a concrete system, of course, a Hazard Analysis and Risk Assessment (HARA) needs to be
conducted to derive safety goals and associated ASILs, but without doubt will lead to the clas-
sifications above for many of a Highway Pilot’s safety goals.

ASIL DECOMPOSITION
Note that the ASIL D assignment is valid for the AD item as a whole and may be lowered for
some of its constituents by appropriate ASIL decomposition. This involves partitioning the sys-
tem into sub-components with lower ASIL that jointly realize the safety goal and must be inte-
grated using ASIL D-compliant technical measures and processes.
In the context of an L4 Highway Pilot, decomposition is also a practical necessity, as many com-
ponents required to implement it are too complex to completely fulfill ASIL D criteria – like high-
end SOCs, operating systems, or application software components55.

AVAILABILITY AS A SAFETY GOAL
ISO 26262 was created with traditional powertrain, steering, braking, or even ADAS (L1 or L2)
functions in mind. Such systems are usually developed with a correctness goal defined and a
fail-silent system reaction, i.e., switch-off, in case of a malfunction.

For an L4 Highway Pilot with its fail-operational/fail-degraded requirement, however, the
availability of the AD system becomes a safety goal with ASIL D too and needs to be met by
applying appropriate technical and process measures – as any sudden non-availability of the
AD system during L4 operation will not be controllable by the passengers and will likely cause
harm (up to fatalities). Specifically, technical measures like fault detection and shutdown are
not sufficient anymore and need to be replaced by component implementations that ensure
fault avoidance and, potentially, fault tolerance; special attention is required for legacy com-
ponents like communication stacks, which are based on error detection layers and keep the
core functionality in QM safety level only. Formally this pattern will not comply with the availa-
bility safety goal pertinent to Level 4 systems.

REDUNDANCY
On the architecture level, the availability goal is usually addressed by appropriate redundancy
measures, which are installed to cope with the unavoidable failure of individual components of
the system (for example, due to permanent or transient electronic faults). All architectures eva-
luated in this report exhibit such redundancy, except for the Single-Channel architecture; note
that mitigating residual SW errors requires diverse redundancy, which is provided naturally by
asymmetric architectures.

SUFFICIENT INDEPENDENCE
Redundancy is not sufficient to ensure availability: Sufficient Independence of the redundant
components must also be ensured, i.e., common cause and cascading failures avoided which
would cause redundant components to fail jointly and render the whole AD system unavailable.
The same requirement applies to intra-channel pairs of an intended functionality and a mat-
ching safety mechanism to ensure a channel’s correctness. Furthermore, Sufficient Indepen-
dence is a precondition for applying an ASIL decomposition: it is only allowed if the constituent
architectural elements to which the initial requirements are allocated redundantly are indepen-
dent of each other and do not dependently violate the functional safety goals.
In the case of an SAE L4 Highway Pilot, this means that redundant system channels to which
decomposed requirements were allocated must be implemented in a sufficiently independent
fashion, to rule out dependent failures that might impede either functional correctness (e.g., in

55 Machine learning algorithms are often cited as intractable for development according to ISO 26262. Actually, their regular structure for the
inference phase makes them quite easily compliant. Rather, it is the learning phase with its non-deterministic properties that stands in the way. The
main problem to solve lies in the SOTIF domain, not in the functional safety.

163www.the-autonomous.com

a Doer-Checker configuration) or system availability (e.g., in a Doer-Fallback configuration). In
addition to the well-known key question within the safety domain of all industries, “How safe is
safe enough?”, there now arises an additional challenge for AD systems: “How independent is
independent enough?”. Since the issue is of utmost importance not only for the achievement of
Functional Safety but also SOTIF of an ADI, section 5.4 does a deep dive into the topic.

IS ASIL D ENOUGH?
ISO 26262 does not give any reference or consideration to the system’s complexity or size – a SW
component implemented in an ASIL D compliant process is considered to be safe, irrespective
of the number of its lines of code (LOC). However, according to [10], a system with more than 10
kLOCs is likely to exhibit residual systematic SW errors, even when developed to the highest
safety standards.

An L4 Highway Pilot can be considered a highly complex system and will certainly involve much
more than 10 kLOCs for its implementation. Therefore, even the application of the ASIL D pro-
cess to a complex system channel might not ensure system safety – instead, partitioning such a
channel into smaller constituents with lower complexity, which are developed to ASIL D and
can be readily (individually) verified, should be considered.

COMPLEX INTERACTIONS
All the investigated ADI architectures except the Single-Channel architecture exhibit some func-
tionally and/or availability-motivated partitioning that reflects the need for redundancy and
decomposition. Some are already initially quite complex (Daruma, Layer-Wise DCF, and DSM),
but even the simpler ones (Majority Voting, CCP, Channel-Wise DCF, and AD-EYE) are likely to
require further partitioning within their channels, to arrive at technically tractable implementa-
tions. Such partitioning will also support the ASIL D argument, as reflected above.

In any case, one might end up with a significant number of components with a (combined)
potentially enormous number of system states and complex internal interaction. To prove that
the integrated system possesses the expected safety and availability properties, and does not
exhibit any unintended emergent behavior, formal modeling and verification can be employed.
Such a process can give mathematical correctness assurances, where human cognitive limits
are exceeded, and manual verification would be too error-prone.

5.3.3 ISO 21448 (SOTIF) CONSIDERATIONS FOR THE ADI IMPLEMENTATION
The standard SOTIF-ensuring process according to ISO 21448 [3] shall be followed when imple-
menting the ADI, both on a system level and when implementing the channels and components
of the architectures presented here.

Architecture considerations or dedicated architecture design and evaluation steps are not reflec-
ted in that standard; mentioned system modification steps to ensure SOTIF mostly focus on functi-
onal aspects and not architectural measures. Still, the chosen architecture will have a decisive
impact on the efforts required to develop and validate an AD system.

However, certain architecture aspects are mentioned in ISO 21448, and closer examination
shows that the architectures presented here quite naturally support the standard and help to re-
duce the effort required for ensuring SOTIF.

SENSE-PLAN-ACT
The established Sense-Plan-Act paradigm is used in ISO 21448 to motivate a modular specifi-
cation, design, and V&V approach, with individual qualitative and quantitative development
goals for each layer. In the architectures described in this report, the analogous layering is exp-

164 www.the-autonomous.com

licitly foreseen only in the Layer-Wise DCF architecture. However, the other architectures can
also be broken down into a similar structure for their top-level building blocks. This applies to
the channels of the Single-Channel, Majority Voting, CCP, Daruma, Channel-Wise DCF, and
AD-EYE architectures, as well as the FUN layer of the DSM architecture. It should be noted that
such a break-down represents the classical (“white box”) approach to systems design and runs
counter to end-to-end AI (“black box”) approaches.

DDT FALLBACK
The “DDT fallback” is assumed as a functional entity (not necessarily an architecture element)
in ISO 21448. This element is present in all the architectures discussed here, except the single-
channel architecture, in an explicit manner (Channel-Wise DCF, Layer-Wise DCF, DSM) and
implicitly through the multiple channels of the Majority Voting and Daruma architectures.

ARCHITECTURE IMPACT ON V&V
ISO 21448 acknowledges that a suitable architecture can support more efficient verification
and validation by enabling a modular approach and reducing the effort for V&V of individual
components (compare also G3: Need for safety by design and D1: Fault Containment Units).
Diversity and independence arguments (compare also D3: Diversity and redundancy for
complex subsystems) are used, albeit in example form only and not as an integral part of the
process to achieve SOTIF.

5.3.4 UNECE R157 CONSIDERATIONS FOR THE ADI IMPLEMENTATION
UNECE Regulation No. 157 [74] applies to passenger cars and busses incorporating Automated
Lane Keeping Systems (ALKS) originally up to a maximum speed of 60 km/h but has been ex-
tended in 2023 to include lane change maneuvers, speeds up to 130 km/h, and light trucks. The
target use case of an ALKS, which “controls the lateral and longitudinal movement of the vehic-
le for extended periods without further driver command”, includes our definition of a Highway
Pilot, by requiring that the system “shall perform the driving task instead of the driver, i.e.,
manage all situations including failures” and by describing the intended ODD as “pedestrians
and cyclists are prohibited … equipped with a physical separation that divides the traffic mo-
ving in opposite directions and prevent traffic from cutting across the path of the vehicle”.

With respect to autonomy level, UNECE R157 does not follow the taxonomy of SAE J3016, but
requires a “transition demand” to the driver in case of severe ALKS failures that would lead to
violation of R157 requirements, and an MRM capability (which is obligatory for Level 4, but may
be limited for Level 3 according to SAE J3016) in case the driver fails to respond to the takeover
request within 10 seconds. However, a “minimum risk maneuver may be initiated immediately in
case of a severe ALKS failure” while “it shall aim at enabling a safe transition of control back to
the driver”. UNECE R157 prescribes a combination of driver and system reactions to unplanned
events like system failures, and it is up to the OEM to define the concrete escalation steps. In
contrast, SAE J3016 distinguishes between Level 3 and 4 with different system responsibilities.

The regulation is relevant for vehicle type approval in the countries that adhere to “World Forum
for Harmonization of Vehicle Regulations (WP.29)” regulations (primarily in the European Union
but also including a number of non-European countries). Manufacturers are required to de-
monstrate compliance to the Type Approval Authority or a nominated “Technical Service”
acting on behalf of it. In its subchapters, R157 defines requirements for the following functiona-
lities in considerable detail (we cite the chapter titles and list the main content):

• “System Safety and Fail-safe Response”: normal operation (DDT, Lane Change Procedu-
res LCP), fault reactions (MRM) and evasive maneuvers

• “Human Machine Interface/operator information”: driver monitoring, system activation,

165www.the-autonomous.com

warnings, takeover procedure

• “Object and Event Detection and Response (OEDR)”: sensing capabilities, detection ran-
ges, environmental conditions

• “Data Storage System for Automated Driving (DSSAD)”: record content (triggers, data ele-
ments), availability, retrieval procedure

• “Cyber Security and Software Updates”: mostly references to adjacent regulations UNECE
R155 and R156

Extensive formal documentation needs to be submitted to the Type Approval Authority, descri-
bing the above functionalities and including a system description, its components and architec-
ture, the safety concept, redundancy mechanisms, degradation strategy, HMI, DSSAD, the cy-
ber security and update schemes etc. A development process in compliance with ISO 26262
and 21448 will presumably already create significant parts of the necessary documentation
and evidence for R157.

Regarding the functional behavior, R157 not surprisingly requires the system to essentially drive
safely, obey the traffic rules, show anticipatory behavior, avoid collisions, and perform an MRM
“after a transition demand without driver response or in the case of a severe ALKS or vehicle
failure” (i.e., to perform self-checks to detect failures and to confirm its performance conti-
nuously). This is specified in a detailed list of requirements that may be sufficient to achieve
safety, but that reflects the open nature of the problem by being sometimes formulated in a
rather general way, e.g.,

• “The activated system shall adapt the vehicle speed to infrastructural and environmental
conditions (e.g., narrow curve radii, inclement weather).”, or

• “The ALKS shall ensure sufficient lateral and longitudinal distance to road boundaries, ve-
hicles and other road users.”

In addition, an annex is devoted to the three scenarios of cut-in, cut-out and deceleration of
“other vehicles”. Those are deemed particularly critical and described in detail using kinematic
parameters and conditions that shall be kept in order to avoid collisions.
Fulfillment of the general functional and safety requirements, as well as under the three specific
scenarios shall be demonstrated and will be tested by the authorities, both on test tracks (inclu-
ding fault injection) and on public roads.

When setting up an ADI development and seeking compliance with R157 to successfully pass
type approval, two key questions arise that naturally point to the architecture focus of this re-
port:

1. How to ensure fulfillment of the requirements in all real-world scenarios, i.e., including un-
specified scenarios (edge cases), ODD violations and arbitrary faults?

2. How to ensure fulfillment of the requirements systematically and not just exemplarily (i.e.,
not just under a limited set of test cases that might have been selected at random, for ex-
ample, just because they can be carried out in a reasonable time)?

Clearly, in addition to taking over and tracing to the concrete functional requirements of R157
throughout the ADI development process, a well-designed architecture can systematically sup-
port fulfilment of the safety requirements of R157:

• Provide independent monitoring functions and diagnostic capabilities, to ensure adhe-
rence to the safety requirements set forth by R157 in an explicit and systematic way; provi-
de an independent MRM capability under arbitrary faults56 by appropriate redundancy.

56 For non-severe faults, the system needs to continue for at least 10 seconds before initiating an MRM.

166 www.the-autonomous.com

• This approach can enable R157 compliance “by design” and continuously during the de-
velopment phase – as opposed to just relying on selected test cases at the end of the de-
velopment phase and at type approval, which are necessarily late, of limited coverage,
and do not ensure full compliance.

• An example of this would be to complement an AI-based system with heterogeneous (rule-
based) monitoring functions, and appropriate redundancy that provides an independent
fallback function in case of faults or driver non-availability (for example, if a planned ODD
exit is approaching and the driver is not responding to a takeover request).

Under this viewpoint, several of the architectures investigated in this report support R157 com-
pliance in a straightforward way; such architectures contain monitoring elements which enable
adherence to the safety requirements. Also, they foresee elements that can take over and exe-
cute an MRM in case of an imminent violation of those rules:

• Cross-Checking Pair: Validators in each channel, redundant channel configuration with
Selectors

• Daruma: Daruma validator, redundant channel configuration with Selectors

• Channel-Wise DCF: M-System, F-System

• Layer-Wise DCF: Primary Planner/Executor, Safety Gates, Safing Planner/Executor

• DSM: Sensor and Function Monitor (SFM), Controller (CSM), and Vehicle (VSM) Safety Me-
chanism

• AD-EYE: Channel 2a and Channel 2b

The Single-Channel and the Majority Voting architectures are not well suited to support R157
compliance, as they require implementing the safety requirements directly in their functional
channels. In those architectures, safety rules might be implemented only implicitly and exem-
plary (e.g., by inclusion of relevant training scenarios in the case of AI-based functions) and
accordingly can only be verified through dedicated test phases. Evidence of compliance is then
sought by probing the system and not also ensured by design.

5.3.5 ISO/IEC TR 5469 CONSIDERATIONS FOR THE ADI IMPLEMENTATION
ISO/IEC TR 5469 “Artificial Intelligence - Functional safety and AI systems” [72] has been publis-
hed in its first edition in January 2024. It is designated as a Technical Report (TR) and as such
not normative, but informative and can be understood as presenting the perceived “state-of-
the-art” about usage of AI in the context of safety-related systems. It is meant as a generic TR,
i.e., not confined to road vehicles, although many references and examples point to autono-
mous driving as a key application area.

It is worth noting that throughout TR 5469, the term “Functional Safety” is used quite broadly
and does not differentiate between E/E system malfunctions (ISO 26262) and violations of SO-
TIF (ISO 21448) – probably stemming from the heavily cited IEC 61508, which as a generic, non-
automotive standard does not differentiate either. In fact, most fault scenarios described in TR
5469 are related to SOTIF and not to Functional Safety (per the definition from ISO 26262 and
used in this report) and accordingly the measures proposed by TR 5469 are meant to address
both sources of risk.

TR 5469 identifies four Usage Levels (A through D), that define the applicability of the report’s
clauses:

a. Use of AI inside a safety-related function to realize the functionality

b. Use of AI systems to design and develop safety-related functionality

c. Use of AI systems, but have only an “indirect” impact on safety

167www.the-autonomous.com

d. Use of AI system, but no impact on safety

TR 5469 also mentions a broad spectrum of “AI” technologies – from simple linear functions to
artificial neural networks (ANNs) – and defines three Technology Classes (I through III) for these:

i. AI fully developed according to an existing Functional Safety standard

ii. AI developed with “complementary” risk reduction methods

iii. AI with no risk reduction

Of these, we consider usage level A and technology classes II/III to be the relevant classificati-
ons in the context of this report, as AI is mostly used in perception/decision-making tasks and is
usually implemented as deep neural networks (DNNs), which are unlikely to be realizable
according to an existing safety standard – in particular, considering the SOTIF impact of the
learning approach typical of DNNs, as opposed to a traditional development.

Based on the above classification, TR 5469 promotes a systematic approach to achieve risk
reduction, by structuring the development effort in 3 stages of AI implementation:

1. Data acquisition

2. Knowledge induction (i.e., training)

3. Output generation (i.e., inference)

For each stage, desirable properties, requirements and KPIs shall be defined and verified du-
ring development. To this end, TR 5469 also provides a description of typical risk factors of AI
systems, such as lack of transparency, explainability and predictability, vagueness of specifi-
cation, data and concept drift, and sensitivity to adversarial or intentional malicious inputs; po-
tential measures and considerations are described like orienting training data on HARA, robust
learning, attention mechanisms, compression technologies, statistical analysis, appropriate
metrics, testing, simulation and field observation, and an extensive list of supporting technical
literature is provided.

However, though it seems likely that such measures can contribute to improved reliability of the
AI function, given the current state of the art they will not attain the same level of objective safe-
ty evidence as traditional development methods. Probably acknowledging these limitations,
and considering that improving AI quality alone is not sufficient to ensure robustness and fault
tolerance, TR 5469 in addition to the described systematic development approach proposes
architectural considerations and design patterns. For illustrative purposes, Figure 57 shows all
of these at once, though it should be noted that TR 5469 states that a single one may be suffi-
cient and does not demand nor explicitly recommend a combination of multiple architectural
measures.

168 www.the-autonomous.com

Figure 57: Architectural patterns proposed by ISO/IEC TR 5469.

• Use a set of “AI or ML components” augmented by a voting logic to provide the nominal,
AI-based functionality of the overall system. This seems suitable for classification tasks, but
not for planning tasks, where different but equally correct solutions may exist (see this re-
port’s discussion of the voting patterns).

• Add a Supervisor with diverse (potentially non-AI) implementation, evaluating the output
of an AI component, followed by a limiter to confine the AI component output to a valid
range; the latter may not be suitable or necessary for classification tasks, where the AI
component is designed to just output a set of admissible values anyway.

• Add a Backup System with diverse (non-AI) implementation and a decision element
(switch) to choose between the main function and the backup function.

While the primary focus of the architectural measures described in TR 5469 is to ensure the
functional safety of individual AI-based components, the same architectural measures can be
scaled and applied to the conceptual system architecture of the ADI. A combination of AI Com-
ponent, Supervisor, and Backup System resembles what we described as the Channel-Wise
DCF architecture; Voting on several AI instances and Limiting Logic might be used alternatively
or in addition to enhance system reliability and robustness.

To summarize, ISO/IEC TR 5469 proposes two complementary workstreams for the develop-
ment of safe systems based on AI:

[1] Structuring the development of AI as a 3-stage approach (data acquisition, learning, infe-
rence) and systematically defining and tracking desirable properties, requirements, and
KPIs for each stage – this will mainly improve the availability of the nominal functionality
(as defined in this report).

[2] An architecture approach including non-AI elements to ensure system availability and
safety. The latter confirms the “architecture-first” approach taken by this report and its po-
sitive evaluation of the architectures containing diverse supervision and validation com-
ponents (Cross-Checking Pair, Daruma, C-DCF, L-DCF, DSM, and AD-EYE). For the sym-
metric architectures (Cross-Checking Pair and Daruma) it would need to be ensured, of
course, that non-identical AI elements are deployed in redundant channels.

AI or ML
components Vote Limiting

logic

Switch

Supervisory
components

Backup decision
system

Data input

Limits

Failure detection result

Architecture c) Architecture b) Architecture a)

169www.the-autonomous.com

5.3.6 ISO/PAS 8800 CONSIDERATIONS FOR THE ADI IMPLEMENTATION
ISO/CD PAS 8800 "Road Vehicles - Safety and Artificial Intelligence" [73] has been published
in December 2024. This standard addresses the safety of AI systems in road vehicles, and it tai-
lors or extends existing approaches currently defined within the ISO 26262 series (functional
safety) and ISO 21448 (safety of the intended functionality). For instance:

• The ISO/PAS 8800 standard considers and adapts to road vehicles the general framework
described in ISO/IEC TR 5469 on safety properties, virtual testing and physical testing,
confidence in use of AI development frameworks and architectural redundancy patterns.

• AI-specific definitions listed in ISO/PAS 8800 are used from ISO/IEC 22989 [76], unless in
conflict with safety-specific definitions. So, safety-related properties are a subset of gene-
ric AI properties described in ISO/IEC 22989.

• On the other hand, Annex B of ISO/TS 5083 applies the guidelines and principles outlined
in ISO/PAS 8800 to the context of Automated Driving Systems.

5.3.6.1 ARCHITECTURAL MEASURES FOR AI SYSTEMS
This section will explore various architectural measures proposed by ISO/PAS 8800 to enhance
critical AI properties such as robustness, resilience, reliability, and predictability, etc. Architec-
tural measures are key design elements that help AI systems to maintain optimal performance
even under challenging conditions. These measures aim to support safe, efficient, and predic-
table operation of the AI system. As with ISO/IEC TR 5469, architectural measures can be app-
lied to individual AI-based components or scaled up to the conceptual system architecture of
the ADI.

5.3.6.1.1 SAFETY-RELATED PROPERTIES
Architectural measures are the structural elements of an AI system that support and maintain
the safety-related properties essential for its safe operation. ISO/PAS 8800 outlines and lists
these safety-related properties, which typically include:

• AI robustness: the ability to maintain an acceptable level of performance under the pre-
sence of semantically insignificant but reasonably expected changes to the input.

• AI reliability: the ability of the AI element to perform the AI task without AI error under a
range of operational conditions and for a specified period of time.

• AI predictability: the ability of the AI system to produce trusted predictions. This implies re-
liable confidence information, i.e., the ability of an AI model to reliably indicate if its pre-
diction can be trusted or not. This is not always true for all kinds of models. For example,
the output of a SoftMax function is frequently misinterpreted as some kind of posterior dis-
tribution which indicates confidence.

• AI controllability: the ability of an external agent to overwrite the behavior or output of an
AI system.

• AI explainability: the ability to explain in natural language which factors influence the AI
element decision and how.

• AI resilience: the ability of the AI element to recover and continue performing the AI task
after the occurrence of an AI error.

• AI generalization capability: the ability of a model to adapt and perform well on the pre-
viously unseen data during inference.

5.3.6.1.2 MEASURES FOR ARCHITECTURAL REDUNDANCY
In Annex G1, ISO/PAS 8800 adopts the same architectural patterns and elements proposed by
ISO/IEC TR 5469, which describes some architectural redundancy patterns for systems using AI
technology components, as illustrated in Figure 57. Figure 58 translates them in the context of
the reference architecture for an AI system.

170 www.the-autonomous.com

Figure 58: Architectural redundancy patterns for an AI system, from ISO/PAS 8800.

Architectural redundancy is designed to enhance the AI properties listed above, detect and
mitigate failures of the AI model, maintain the system operation in the event of a failure, and
ensure a safe system failure. Various architectural redundancy patterns can be employed to
detect and react to AI errors:

Diverse redundant models: Redundancy can be achieved by voting between diverse models.
It involves combining multiple AI technologies fulfilling the same functionality, but implemented
starting from different problem formulations, using different training data or different models.
Model ensembles: combine the predictions obtained by multiple different models to create a
consolidated output. The multiple models can be of different architecture and have different
hyperparameters or of similar architecture but trained on different data sets.

N-version diverse programming: Multiple independent versions of an AI model that are built
to predict the same output when the same input is provided. Independence and diversity are
attained via using different training data, different AI model architectures or a different training
process.

Supervisory, limiting logic and non-AI backup system:
• Supervisory system: A monitoring layer (safe envelope) that oversees an AI component's

decisions and actions.

• Limiting Logic: Predefined rules that restrict AI behavior to prevent dangerous or uninten-
ded outputs.

• Non-AI Backup System: A fallback system that does not rely on AI.

The Channel-Wise DCF architecture explicitly supports the use of a supervisory layer and non-

All pre-
processing

AI post-
processing
including

limiting logic

AI model

AI model

AI model

Supervisory

Backup decision
system

Non AI
System

Architecture redundancy elements

Al component

Element not belonging to this Al system

Al system

Source Consumer

Control
element

Input

Monitoring
data

Monitoring
data

Control
signals

Vote &
OutputOutput Switch &

Output

AI System

Limits AI Failure
detection

171www.the-autonomous.com

AI backup systems by organizing them into distinct functional channels. So, ISO/PAS 8800 reco-
gnizes it as a suitable method for addressing the safety challenges of AI-based systems. Other
architectures described in this report with diverse architectures do not match the ISO/PAS 8800
proposal directly, but provide other means to achieve similar effects.

Selection techniques for architectural redundancy (voting and switching):
• Voting-based decision procedure for architectural redundancy patterns:

▪ Hard voting (majority voting): every individual classifier votes for a class, and the
majority wins.

▪ Soft voting: every individual classifier provides a probability that a specific data point
belongs to a particular target class. The predictions are weighted by the classifier's
importance. Then the target label with the greatest sum of weighted probabilities
wins the vote.

• Switching-based approach: the selection of the base predictor model is made based on
predefined rules rather than voting:

▪ Threshold switching: the model whose predictions satisfy certain conditions, or a set
of performance thresholds is selected.

▪ Performance switching: the model with the best recent performance is selected.

Usage of “AI model” and “conventional software”: Components using conventional software
can be used to perform the plausibility checks or verification of the output generated by the AI
components.

5.3.6.1.3 QUALITATIVE AND QUANTITATIVE ANALYSIS OF AI ARCHITECTURES
ISO/PAS 8800 proposes qualitative and quantitative analysis activities to ensure the safety of
the AI architecture; qualitative analysis focuses on structural and functional aspects of AI archi-
tecture, whereas quantitative analysis evaluates the measurable performance of AI architec-
ture.
AI work products can be analyzed for systematic faults through the following methods:

• Peer Reviews to assess hyperparameter selection and optimization.

• Requirement-based verification to check whether the AI architecture meets the AI safety
requirements, or if individual elements violate AI safety requirements allocated to them.

• Failure analysis at interpretable system interfaces to identify and mitigate potential failures
by integrating appropriate monitoring mechanisms.

Architecture analysis, aiming to identify potential AI-related errors, will assess:

• Tolerance: evaluating system resilience against incorrect inputs, computation errors, and
adversarial attempts.

• Adaptability: ensuring computational behavior remains stable before, during, and after
adaptation57.

• Information flow of the proposed architectural concept: reviewing how data moves bet-
ween subsystems and interacting components to ensure transparency and maintainability.

• Safety-related properties of AI systems, including robustness, reliability, predictability, and
resilience, can be analyzed using both quantitative and qualitative architectural measures.

5.3.6.2 ISO/PAS 8800 STANDARD CONCLUSIONS
The ISO/PAS 8800 standard addresses relevant architectural patterns that guide architectural
choices and help achieve compliance with its guidelines. For example, voting-based classifi-

57 In the context of AI, adaptation refers to modifying the AI system’s behavior, e.g., by training with more data or changing the algorithms.

172 www.the-autonomous.com

cation or decision procedures are useful for redundancy patterns, although this report does not
endorse the full system-level Majority Voting architecture.

The use of modular architectures, such as the Channel- or Layer-Wise DCF, DSM, or AD-EYE
architectures, is another way to comply with ISO/PAS 8800. These layered designs aim to en-
hance system safety and help maintain functionality during faults. If their fallback mechanisms
are implemented in non-AI means – as suggested by ISO/PAS 8800 – such architectures ensure
continued operation if AI-driven decisions fail.

5.3.7 UL 4600 CONSIDERATIONS FOR THE ADI IMPLEMENTATION
The “UL Standard for Safety for Evaluation of Autonomous Products, UL 4600” [22] was first pu-
blished in 2020 and in its third edition in March 2023. It aims at defining a comprehensive safety
case for autonomous vehicles both in urban and highway use cases, and a structured set of
safety claims, arguments and evidence shall be collected.

Extensive chapters and clauses cover a definition of the safety case structure and content, a
systematic risk assessment, human interaction aspects, functional and architecture aspects, de-
pendability claims, data storage and networking topics, verification and validation, tools con-
siderations (including COTS and legacy components), product lifecycle and maintenance,
safety performance indicators (SPIs) and finally conformance assessment and monitoring.

UL 4600 is not meant as a process standard and does not prescribe a specific sequence of
development steps but instead focuses on the artifacts that shall be created to constitute the
safety case; it is designed to be compatible with ISO 26262 and ISO 21448, concretizing and
detailing those standards for the use case of autonomous functions.

Compliance to UL 4600 is not legally required anywhere but would show an OEM’s commit-
ment to safety. Also, UL 4600 contributes to the “state of the art”, and as such would constitute
a relevant safety baseline in case of legal (warranty) claims.

With respect to the architectural focus of this report, UL 4600 mandates a structured ADI archi-
tecture approach both on the logical and physical level, but (as expected from a standard) no
specific architecture is prescribed. Still, architectural considerations are implicitly or explicitly
requested in many chapters and clauses:

• Established architectural concepts like Fault Containment Regions (FCR) and Elements-
out-of-Context (EOOC) are used.

• The Doer-Checker pattern is referenced frequently as a viable architectural option and
even singled out in the standard’s “Terms” section; defective construction patterns shall be
avoided (“command-override” is mentioned as an example).

• UL 4600 requirements to identify and mitigate faults can realistically only be met with a
suitable architecture that contains monitoring and fallback elements.

• UL 4600’s chapter “Human Interaction” lists extensive requirements to deal with emergen-
cy horns, manual directions by police, occupant entry and exit, ensuring safety of operati-
onal staff, misuse incl. malicious misuse etc.; asymmetric (diverse) architectures might be
better suited to handle this complexity, e.g., even if detection of an emergency vehicle or
police intervention would fail in a main system, an orthogonal “don’t hit anything” policy
performed by the fallback could mitigate the risk. This approach would address the requi-
rements in a general way, by virtue of system design and architecture, instead of directly
specifying and addressing case after case (with potential misses caused by the long tail of
edge cases).

• Chapter “Autonomy functions and support” explicitly requires redundancy. Many functional

173www.the-autonomous.com

requirements of this chapter can realistically only be met with an architectural approach
that supports them – e.g., supervisor components to detect ODD violations.

• Sufficient Independence, i.e., avoidance of common cause faults of redundant channels is
stated as required.

• Observability of perception functions is mandated “intentionally”, and it is mentioned that
this clause might rule out end-to-end AI approaches.

• Certain architecture elements, like monitors/supervisors and redundant channels, are im-
plicitly required by many clauses, e.g., to mitigate faults, mitigate ODD violations, or to
collect performance metrics and track SPIs (Safety Performance Indicators) mandated by
UL 4600. For instance, with reference to UL 4600 a framework for tracking SPIs and
detecting hazards is proposed in [77], and applied to the Daruma architecture along with
example cross-channel SPIs and a proof-of-concept implementation.

• Architectural partitioning is encouraged to “effectively limit the scope of changes to be
analyzed” in case of implementation changes.

For the design of an ADI architecture, the following key requirements can be identified when UL
4600 compliance is sought:

• A logical and a corresponding physical system architecture needs to be designed. This
confirms the “architecture first” approach of this report.

• Redundancy is mandated, with the “design intent for redundancy” to be specified – reflec-
ting additional clauses that require a fault model and corresponding mitigation measures
that shall be defined. For “life critical risks”, faults shall be mitigated that affect a single
FCR; use of multiple FCRs i.e., redundancy is a logical and recommended measure.

• A layered channel architecture is recommended implicitly, as observability of the percepti-
on results is required. This effectively rules out monolithic end-to-end AI approaches,
which likely do not provide such observability. However, segmented end-to-end approa-
ches with separate perception/prediction and planning/trajectory layers would provide
observability and would be admissible.

• Supervision elements are required for multiple reasons – e.g., to identify faults, collect me-
trics, and track SPIs.

• Sufficient independence to avoid common cause failures of redundant elements is to be
ensured, implying a certain level of diversity as a high-integrity implementation of complex
channels seems to be unrealistic. This preference of asymmetric architectures with hetero-
geneous FCRs is also supported by multiple references to the Doer-Checker pattern.

From the architectures investigated in this report, the Single-Channel architecture, and particu-
larly an end-to-end AI-based implementation thereof, would not be compliant to UL 4600 for
lack of redundancy, supervision, and observability (the latter in the case of a monolithic AI net-
work).

The Majority Voting architecture provides a better basis to achieve UL 4600 compliance, but
without further channel-internal measures also lacks observability and supervision elements
and is sensitive to common cause faults.

The Cross-Checking Pair and the Daruma architectures improve on this by providing all capa-
bilities that UL 4600 asks for: redundancy, observability and supervision, with Daruma appea-
ring to provide a more differentiated evaluation and handling of faults. However, a “full com-
puter redundancy” as suggested by these approaches is explicitly not mandated by UL 4600
(not to speak of the triple redundancy required for Majority Voting) and asymmetric Doer / Che-
cker approaches are encouraged instead. To avoid common cause failures a heterogeneous
implementation of their channels will also be needed.

174 www.the-autonomous.com

The Channel-Wise DCF architecture provides a sound basis for achieving UL 4600 compliance
but would need a layering of its L2-System into separate perception (world model) and policy
(trajectory planning) components to achieve the observability target for perception, and likely
additional internal supervision capabilities for tracking of metrics and SPIs. The same applies
to the DSM architecture with its FUN channel and to the AD-EYE architecture. In both architec-
tures, employing an end-to-end AI in the Doer or FUN channels would formally not be compli-
ant, if such AI would not offer the internal observation and supervision capabilities.

Finally, the Layer-Wise DCF architecture with its multiple layers of Doer / Checker configurations
is a very good basis to achieve UL 4600 compliance, as besides the foreseen redundancy, the
observation and supervision criteria are also already met on the conceptual level, and the
asymmetric approach helps ensure immunity against common cause failures – as with the DCF
architectures.

To summarize, UL 4600 endorses the architecture focus of this report, and several of the archi-
tectures discussed here provide a sound basis to achieve compliance with the standard. Besi-
des the direct architectural impact of UL 4600 (redundancy, observability, supervision capabi-
lities) there are many additional clauses which can be supported indirectly by a suitable ADI
architecture.

5.3.8 ISO/TS 5083 CONSIDERATIONS FOR THE ADI IMPLEMENTATION
ISO/TS 5083 “Road vehicles – Safety for automated driving systems – Design, verification and
validation” [71] was published in 2025. It derives from the whitepaper “Safety First for Automated
Driving” (SaFAD) [4] published by a group of OEMs and Tier-1s in 2019. This technical specifica-
tion gives guidance on how to develop and validate an AD system for road vehicles (excluding
motorbikes) and how to structure the safety case for an AD system. It focuses on design, verifi-
cation, and validation, but also outlines cybersecurity considerations.

ISO/TS 5083 includes normative requirements regarding safety strategy, safety by design, vali-
dation, and operation of an ADS-equipped vehicle. Throughout these sections, the document
refers to capabilities that the AD system must provide, among these also a “DDT fallback” for
the execution of MRMs. While these are required to be provided by the AD system, the docu-
ment does not suggest how this should be accomplished, i.e., it intentionally leaves open what
system architecture should be employed. This is intended to allow for different architectural so-
lutions to match the specific AD use case and associated ODD.

ISO TS 5083 is architecture-agnostic and does not include any normative requirements regar-
ding the conceptual system architecture. It only has an indirect impact on the architecture and
achieving compliance is similar for all architecture candidates. Only in its Annex B on the use of
AI models within the AD system are architectural measures mentioned, concretely the AI / Super-
visor / non-AI Backup pattern suggested by ISO/PAS 8800, which may be employed either for
dedicated AI subsystems or (equivalent to the Channel-Wise DCF architecture) on an ADI sys-
tem level.

5.3.9 PROPOSED SUPPORTING STEPS FOR THE ADI IMPLEMENTATION
Reflecting the safety considerations from the previous sections, the following four development
steps are suggested for the implementation of the architectures of an SAE L4 Highway Pilot de-
scribed in this report:

175www.the-autonomous.com

STEP #1: SYSTEM PARTITIONING AND MAPPING
Partitioning the system into subsystems (see also D1: Fault Containment Units) that jointly imple-
ment the L4 Highway Pilot functionality is usually done as one integral step, to meet the system
correctness goals, the availability goals, and ensure feasibility of the ASIL D requirements. In
fact, the presented architectures (except the Single-Channel architecture) largely anticipate
this step, introducing redundancy to ensure system availability and checking instances to ensu-
re system correctness (integrity).

The partitioned system architectures also serve as a basis for the formal ASIL decomposition,
which results in assignment of ASILs to the individual architecture elements. We anticipate the
following assignments58:

58 Formally, the ASIL assignment and decomposition needs to be carried out separately per Safety Goal, in our problem space usually for the
correctness and the availability goals. If an element receives differing ASILs in this process, the stricter one applies.

Develop-
ment step Goal Description

System
Partitioning

System
correctness

Ensure correct system outputs (e.g., trajectories) under the envi-
ronmental and vehicle conditions:

• Voter in Majority Voting architecture

• Validation and Selectors in Cross-Checking Pair architecture

• Daruma evaluator + Selector in Daruma architecture

• Doer-Checker configuration with Decider in Channel-Wise
DCF

• Doer-Checker configuration with Safety Gates in Layer-Wise
DCF

• FUN/SFM/CSM in the DSM architecture

• Channel 2a in AD-EYE

System
availability

Add redundancy to ensure availability of the system under com-
ponent failures:

• Channels in Majority Voting, Cross-Checking Pair, and Daru-
ma architectures

• Doer-Fallback configuration in Layer- and Channel-Wise DCF
and AD-EYE architectures

• VSM and Primary/Secondary Networks in DSM architecture

• Fault-tolerant (redundant) implementation of Voter (Majority
Voting), Decider and Safing Gates (DCF, AD-EYE), Selectors
(Cross-Checking Pair, Daruma), Daruma evaluator.

ASIL D
feasibility

Further partition (modularize) the channels to enable ASIL D ca-
pable subsystems under HW and SW component constraints.
This is usually not visible on the conceptual architecture level,
but a necessary practical step in all architectures. Examples are:

• Separate perception components per sensor

• Low-level vs. high-level fusion

• Trajectory planning and validation

• Voting and decision components

176 www.the-autonomous.com

After the (logical) system partitioning and ASIL decomposition, the mapping of the components
to available HW modules (SOCs) and SW partitions/operating systems needs to be performed,
including selection of appropriate communication means between the components. This map-
ping will be largely guided by the functional demands (e.g., computing performance require-
ments of each logical component, network bandwidth required) and the available functional
safety support by SOCs and the SW platform; it may be an iterative process until an optimum
solution is found.

For the sake of generality, this report does not consider specific SOCs and SW platforms and
therefore does not dive into the mapping task further.

Archi-
tecture ASIL Components

Single-
Channel D Whole architecture

Majority
Voting
(2oo3)

B(D)59 Channels

D Voter (also fail-operational)

Cross-
Checking
Pair

B(D) Channels including Validators

D Dual Selectors

Daruma
B(D) Channels

D Daruma validator, dual Selectors

Channel-
Wise DCF

B(D) L2-System, M-System, F-System

D D-System (also fail-operational)

Layer-Wise
DCF

B(D)

Primary/Safing Planners, Primary/Safing Planner Safing Gates,
Primary/Safing Trajectory Executor, Primary/Safing Trajectory
Executor Gates (some integration functionality between these
nodes may be ASIL D, but is not explicitly visible)

D Priority Selector, Vehicle Control (also fail-operational)

DSM
B(D) FUN (Function), SFM (Sensor and Function Monitor), Primary

Network, Secondary Network.

D CSM (Controller Safety Mechanism), VSM (Vehicle Safety Me-
chanism)

AD-EYE
B(D) Channels

D Dual Selectors

59 Instead of the B(D) + B(D) decompositions to achieve ASIL D, other variants are also possible wherever multiple components work together: A(D)
+ C(D) or QM(D) + D.

177www.the-autonomous.com

STEP #2: FORMAL MODELING AND VERIFICATION
After the partitioning and mapping has been performed, a complex architecture with a signi-
ficant number of components and interaction may be the result. To validate the result, formal
methods can be used to deal with the potentially large, and often cognitively intractable num-
ber of system states and ensure the desired system properties with a mathematical proof.

STEP #3: SUFFICIENT INDEPENDENCE ANALYSIS
Design principle D7: Mitigation of common cause hazards purposefully prescribes introducing
diversity on the architecture and implementation level. Nevertheless, in realistic implementati-
on scenarios, the redundant channels of the conceptual system architectures might be imple-
mented on homogeneous platforms (e.g., SOCs and OSs) and communication technologies.
Also, the implementation of applications like AD algorithms might share a set of mathematical
libraries, HW accelerator layers, etc. This might even be extended to joint perception and fusion
components used by the different channels.

To achieve a sound safety argumentation, a systematic and detailed analysis of “sufficient in-
dependence” (Dependent Failure Analysis, DFA) will need to be performed, to identify plausi-
ble potentials for common cause and cascading failures and to resolve them. Note that such
an analysis will be necessary even if the components of each channel are sourced from diffe-
rent suppliers or implemented by different teams, as they might use identical third-party com-
ponents, derive from the same architecture specification (e.g., AUTOSAR), or use identical le-
gacy IP blocks even within heterogeneous SOCs. For further details see section 5.4.

Develop-
ment step Goal Description

Formal
Modeling
and
Validation

Logical consistency,
correctness, and
system availability

Create formal system model and formal description of
desired properties, and simulate on logical (conceptual
architecture) level:

• Proof of desired properties

• Absence of violations of such properties (e.g., ab-
sence of single points of failure)

• Avoidance of unintended emergent behavior

Logical - physical
consistency, system
availability

Add formal modeling of the mapping of the logical
building blocks to physical components and simulate
on physical (implemented architecture) level:

• Preservation of desired properties

• Absence of violations of such properties (e.g., ab-
sence of single points of failure under the physical
mapping

178 www.the-autonomous.com

STEP #4: MARKOV ANALYSIS
The overall failure rate needs to be determined and proven to be within a set target, usually in
the order of magnitude of ASIL D metrics (10-8 /h) (compare section 2.2.7). For complex, fault-
tolerant architectures with redundant paths like the ones described in this report, one cannot
simply add up the failure rates of the constituents but must consider their interaction. This
amounts to describing the overall system’s states (like normal operation, degradation etc.) and
their transition probabilities (derived from the individual component failure rates) in a Markov
model and calculating the resulting overall failure rate.

In addition to these supporting steps, the relevant standards like ISO 26262 and established
engineering practices prescribe extensive testing and simulation for verifying the correctness,
reliability and availability of complex AD systems and algorithms. For the use case of an SAE
Level 4 Highway Pilot, these shall only be intensified compared to systems of lesser criticality. In
this context, fault injection campaigns are of particular value and can challenge many design
properties, such as sufficient independence of redundant channels, fault tolerance of arbiters
and resilience of the overall systems against arbitrary faults in their components.

5.4 SUFFICIENT INDEPENDENCE
5.4.1 INTRODUCTION
As addressed in section 1.4, the evaluated architectural candidates are on an abstraction level
which is referred to as system-level conceptual architecture. Design principle D1: Fault Contain-
ment Units is followed by all candidate architectures except “monolithic architecture”. In other
words, the Automated Driving Intelligence (ADI) consists of a set of redundant subsystems that
each form a Fault Containment Unit (FCU), assumed to fail independently from other FCUs.
Design principle D1: Fault Containment Units is a logical consequence of the existence of the
safety-related availability requirement for the ADI (see S2: AD Intelligence output availability),

Develop-
ment step Goal Description

Markov
analysis

Evaluate system
failure rate

Model system states and transition probabilities from in-
dividual component failures; calculate overall failure
rate.

• Calculate overall failure rate, considering FuSa and
SOTIF

• Meet target failure rate

Develop-
ment step Goal Description

Sufficient
indepen-
dence
analysis

Ensure system
availability and
correctness

Systematically analyze HW and SW implementation
(platform and application, including communication
network), considering the conceptual interaction of the
architecture’s building blocks:

• Prove absence of plausible potential for common
cause faults in redundant elements, on platform and
application level

• Prove absence of plausible potential for cascading
faults across the ADI architecture

179www.the-autonomous.com

which stems from an availability safety goal of the automated driving system (ADS) item. For
example, the Layer-Wise Doer / Checker / Fallback (L-DCF) architecture satisfies the safety-re-
lated availability requirement by two redundant and assumedly independent fail-silent functi-
onal channels (see Figure 60), which is an application of the Duplex pattern (see section
3.2.1.5).

Incorrect results within the channels of such a two-channel approach have the potential to vi-
olate the correctness requirement of the ADI (see S3: AD Intelligence output correctness). That
is why errors that lead to incorrect results of the intended functionality within the respective
functional channels are detected by a checker which will either silence the channel (L-DCF) or
alternatively invalidate its outputs. Both error reactions signal an incorrectness of the affected
ADI channel to an arbiter, which consequentially will exclude the affected channel from con-
trolling the actuators. Therefore, any error condition that leads to the failure of both redundant
channels’ intended functionality violates the availability requirement of the ADI. The same app-
lies for error conditions that lead to false positives of the checkers of both functional channels.
Remark: If only one of the two functional channels fails – either silently or with an invalidated
output – the availability requirement of the ADI remains fulfilled. Because of the above-descri-
bed requirements, a redundancy approach can only be meaningful if the involved channels fail
independently.

In the following discussion, we will not refer to the specific architectures described in this report,
but assume such a simplified two-channel configuration (see Figure 59 below), because it is a
representative pattern for all architectures that employ redundancy.

Two elements (like functional channels) fail independently if there is an absence of statistically
dependent failures of the two elements60. This characteristic also outlines the definition of the
term "Independence" in ISO 2626261 and translates into the absence of common cause failures
AND cascading failures.

Independence is also a necessary precondition for meeting the target failure rate specified by
ISO 26262 for the violation of the ASIL D availability safety goal of the ADS by random hardware
faults (PMHF). The PMHF topic is a special challenge because conventional, fail-silent safety
mechanisms that lead to a switched-off mode kind of safe state violate the availability safety
goal. With respect to the availability safety goal, raw FIT rates of devices need to be taken for
evaluating the PMHF, as any fault can lead to a shutdown of the channel. The raw FIT rates of
realistic MCUs and SOCs are much higher than the needed PMHF, and only the independent,
probabilistic combination of two redundant channels can achieve the ASIL D target.

Implementation-wise one of the main challenges of system-level conceptual architectures for
the ADI is demonstrating Independence of redundant functional channels that contribute to the
fulfillment of the availability safety goal of the ADS item. As stated above, each independent
channel itself must fulfill the safety requirements in terms of correctness, which also brings along
intra-channel independence requirements between the channels’ intended functionalities and
their safety mechanisms. Hint: These independence requirements are most often used as a base
for an application of an ASIL decomposition, which reduces the development efforts.

The safety-related, availability-driven aspect results in an independence requirement between
channels. However, the reader shall be aware that the correctness aspect is equally important,
which results in independence requirements between the channels but also within each chan-

61 With “Independence” in this report “Technical Independence” is addressed which shall be distinguished from the independence of parties within
an organization involved in safety actions.

60 In other words, two elements A and B fail independently if and only if the probability
P(A fails | B failed) = P(A fails) and consequentially P(A fails AND B fails) = P(A fails) * P(B fails).

180 www.the-autonomous.com

nel. This report focuses on the independence requirement between the channels. Indepen-
dence requirements within a channel (e.g., between a nominal function and a checking layer
on top) are already well established in the domain of fail-silent systems. Figure 59 displays the
inter- and intra-channel dependencies for a two-channel approach (as it is applied in the
Layer-Wise Doer / Checker / Fallback (L-DCF) architecture as an example).

Figure 59: Inter- and intra-channel independences for a two-channel approach like in the L-DCF architecture

Intra-channel and inter-channel Independence have their characteristic challenges that need
to be mastered when implementing the conceptual architectures (for more details see juxtapo-
sition in section 5.4.3). At first glance, postulating the independence of the failures of specific
elements of the conceptual architecture seems straightforward. However, the true challenge of
Independence must be addressed at the frontline of HW- and SW implementation. This shall
not downplay the important achievement of realizing that the elements shall be independent.

Every correct decision for Independence on higher abstraction levels can be jeopardized on
lower abstractions levels. As an example, diversity of design is a well-known measure for avoi-
ding common cause failures. However, the claim of Independence of allegedly diverse SW
components cannot be made without further analysis if codes share the same libraries. Likewi-
se, a hardware example could be the microcontrollers of two different vendors that are percei-
ved as diverse and contributing to the independence of functional channels without the awa-
reness that both use the same 3rd-party IP blocks. Consequently, an independence measure to
target common cause failures that is based on diverse HW or SW components must be comple-
mented by requirements aimed at managing diversity by those responsible for implementation.
Hint: There are other diversity measures besides diversity of design of the components that are
applicable, such as diversity of usage.

The Independence guidance given in this chapter of the report is restricted to a high level of
HW architecture and SW architecture (i.e., on the granularity of HW and SW components).
Typical challenges faced at this abstraction level in the form of coupling factors will be addres-
sed and independence measures for the resolution thereof will be listed.

The prior paragraphs refer several times to the term “Independence”. It is important to empha-

181www.the-autonomous.com

size that absolute Independence is a characteristic of two or more elements that is striven for
by functional safety engineers, yet it is hardly achievable. This insight is in line with the funda-
mentals of Functional Safety, whose objective has never been to make sure that there is no risk
at all but the avoidance of any unreasonable risk. Thus, to achieve Independence the system
must be systematically analyzed with high rigor by a multidisciplinary team embedded in an
organization with a well fostered safety culture. As a further step, any combination of identified
potential for dependent failures needs to be investigated by the team and resolved as far as
reasonably achievable. This activity is performed to a rigor level which is referred to by the safe-
ty community as “Sufficient Independence”.

Without a clear guideline, the borderline between Sufficient Independence and Insufficient In-
dependence is subject to individual engineering judgements that are influenced by attitudes.
This situation resembles the “How safe is safe enough” dispute that is present in all aspects of
the safety community, not only Functional Safety. Typically, Functional Safety standards provide
some general guidance in finding the right answers to this question, but as a matter of fact on
some level of detail always leave room for interpretation, which requires expert judgement and
the required sense of responsibility. It is important to consider that less rigorous safety procedu-
res might be driven by the commercial goal to reduce costs. The demand for an objective ap-
proach for achieving Sufficient Independence in the realm of automated driving systems leads
to the initial question of what the ISO 26262 definition of Sufficient Independence is. Although
there is no clear definition of the term, there are points of reference:

The following statement can be found in the frame of the Independence, which as a require-
ment goes hand in hand with every ASIL decomposition applied during development:
These elements are sufficiently independent if the analysis of dependent failures (see Clause 7)
does not find a plausible cause of dependent failures that can lead to the violation of an initial
safety requirement, or if each identified cause of dependent failures is controlled by an ade-
quate safety measure according to the ASIL of the initial safety requirement.

Which, for a more profound understanding, puts the focus now on the term “plausible”. The
understanding of the term “plausible” can be facilitated by ISO 26262-9:2018 clause 7.4.2. as
another point of reference:
Each identified potential for dependent failures shall be evaluated to determine its plausibility, i.e.,
if a “reasonably foreseeable” cause exists which leads to the dependent failure and consequently
violates a required independence, or freedom from interference, between given elements.

with a clear definition of “reasonably foreseeable” in ISO 26262-1:2018:
“technically possible and with a credible or measurable rate of occurrence”

A good understanding of this mesh of definitions and statements of ISO 26262 serves as a rea-
sonable base for meeting the standard’s objectives while elaborating a methodology for achie-
ving Sufficient Independence.

The identification of the potential for dependent failures is done by a so-called dependent fai-
lure analysis. The best practice for a dependent failure analysis on system level is to perform as
a first step a Fault Tree Analysis (FTA) with a violation of the availability safety goal as the main
event.

The FTA takes as an input the system architectural design. Then the next step is to deductively
identify plausible causes that lead to a violation of the main event. They are analyzed down to
the HW- and SW component level which can be understood as the leaves of the fault tree. The
components themselves are analyzed bottom-up by means of a Failure Mode and Effects Analy-
sis (FMEA). This approach can be initiated early in the design process and the components’
complete failure modes are identified. Each failure mode will be docked to the existing corre-

182 www.the-autonomous.com

sponding leaves of the fault-tree. By understanding the system-level meaning of their resulting
component-level failure modes by means of the fault tree, the faults identified in the FMEA can
be potentially unmasked as the root cause of a dependent failure. To this aim, as a further step,
a minimal cut set analysis shall be performed by one of the established tools for fault tree analy-
sis62. This will reveal identical events instantiated multiple times and connected to AND gates in
the existing fault tree. Furthermore, the different events of the cut sets are then analyzed for
dependent failure initiators based on the outcome of the component-level FMEAs but also by a
checklist-driven review performed by a multidisciplinary team. Hereby the abstraction level that
is not covered anymore by the FTA is considered.

The mentioned checklist reflects the lessons learned of the industry with respect to dependent
failures that helps to realize couplings between the failure modes of components that result
from their respective FMEAs. Although ISO 26262 gives a good starting point with the inputs
gathered on the basis of the experience of its topic group members, no organization as per ISO
26262 shall neglect to enhance the checklists by its own lessons learned.

Hint: From a holistic perspective, a safe automated driving system requires more than just the
Functional Safety aspect. Functional Safety relates to the malfunctioning of E/E systems (faults
and failures addressed above). In addition, functional insufficiencies of the intended functiona-
lity must be considered (see next chapter “The role of SOTIF in achieving Independence”). This
approach is known as the Safety of the Intended Functionality as outlined by ISO 21448. As a
consequence, the minimal cut sets addressed above also need to be reviewed for functional
scenarios and accompanying triggering conditions that might result in common cause faults.

5.4.2 THE ROLE OF SOTIF IN ACHIEVING INDEPENDENCE
ISO 21448 (2022) defines “Safety of the intended functionality (SOTIF)” as the absence of unre-
asonable risk due to hazards resulting from functional insufficiencies of the intended functiona-
lity and its implementation.

Functional insufficiencies can be seen as unsafe system properties that can be categorized into
two types:

• Insufficiencies of specification (e.g., unspecified behavior in a certain operational situati-
on, insufficient specification of the ODD, false assumptions about environmental factors or
traffic participants), and

• performance insufficiencies (e.g., limitations of the technical capability of sensor or algo-
rithms, inability to handle misuse activation of the system outside the ODD).

SOTIF-related hazards are initiated by triggering conditions in concrete scenarios (e.g., adver-
se weather conditions, unknown traffic signs, special combination of driving scenarios). Such
triggering conditions may activate functional insufficiencies present at the system level, in a
subsystem or channel, as well as in lower architectural levels, in a hardware or software ele-
ment. A single triggering condition may activate several performance insufficiencies or insuffi-
ciencies of specification (e.g., heavy rain impacting different sensors such as radar and came-
ra). This is analogous to the concept of dependent failure initiator from the ISO 26262.
Several different triggering conditions may cause the same functional insufficiency of an ele-
ment of the system. In addition, a specific combination of triggering conditions may (gradually)
activate a functional insufficiency.

Figure 60 summarizes the cause-effect model of SOTIF-related hazards, from the perspective
of the system and element level.

62 Minimal cut sets can be understood as a set of basic events that lead to a violation of the top event when logically ANDed.

183www.the-autonomous.com

Figure 60: Cause and effect model of SOTIF. Adapted from ISO 21448:2022 Figure 3.

5.4.2.1 ANALYSIS OF DEPENDENCIES FOR SOTIF
When analyzing SOTIF-related hazardous behaviors, both contributing factors – potential func-
tional insufficiencies and potential triggering conditions – as well as their combination, are iden-
tified. Other factors, which are not causal but contribute to the occurrence of harm, include:

• the scenario containing conditions in which the hazard can lead to harm, and

• the inability to gain sufficient control of the hazardous event.

• Functional insufficiencies on element level are classified into:

• Single-point functional insufficiency: those that can be activated by one or more triggering
conditions and only involve one element.

• Multiple-point functional insufficiency: those that can only be activated in conjunction with
functional insufficiencies of other elements, in the presence of one or more triggering con-
ditions.

Such a general root cause classification can be combined with other categorizations to support
SOTIF-related analysis, e.g., classifying functional insufficiencies according to the sense-plan-
act model. See [39, 21] for a classification of output insufficiencies in four major categories:
world model, motion plan, traffic rule, and operational design domain (ODD).
By using appropriate methods, e.g., cause63 tree analysis or Bayesian networks, the effect chain
of triggered functional insufficiencies can be analyzed. Both the functional and the technical
aspects shall be considered. In particular, the analysis of common causes and coupling factors
that may lead to output insufficiencies at the element level is part of such analysis.
SOTIF-related dependencies may include the following cases:

• Channels or components with the same functional insufficiencies.

• Channels or components with different functional insufficiencies, but dependent triggering
conditions activating them (e.g., multiple triggering conditions that happen gradually).

• Combination or propagation of output insufficiencies.

Note that the classification of dependent issues into cascading and common cause ones is also
applicable for SOTIF. If an element’s output is “insufficient” (i.e., its performance is lower than a
given acceptance criteria), the next element in the control or data chain may “cascade” the

63 To avoid the term “fault”, ISO 21448 refers to “cause tree analysis” instead of “fault tree analysis”.

184 www.the-autonomous.com

issue. Therefore, the propagation of such insufficiencies and the effects on the system’s behavior
need to be analyzed.

The architectural aspects of the system determine the type of dependent issue, cascading or
common cause:

• the hierarchical structure of the elements, and

• the temporal behavior of the elements, including latent issues, i.e., accumulation of unde-
tected/unhandled/mishandled output insufficiencies or faults over time that might combi-
ne to cause a SOTIF-related hazardous behavior.

5.4.2.2 INDEPENDENCE AND REDUNDANCY
System-level conceptual architectures can be designed in such a way that existing redundan-
cies are improved by demanding sufficient independence not only from a Functional Safety but
also from a SOTIF perspective.

Consider the redundant channel architecture shown in Figure 61:

• A function in a system is implemented by 2 or more redundant channels.

• Each channel can satisfy the sub-function by itself in a given set of driving conditions.

• The correct behavior of any of these redundant channels is sufficient to ensure the safety
of the intended functionality.

Note that such an architecture resembles, e.g., the Active/Hot Stand-By pattern of the asymme-
tric architectural candidates, which require the redundant paths to fail independently.

Figure 61: Example of a 2-channel system architecture. Taken from ISO 21448:2022 Figure C.17.

Both channels implement the same function, and each can avoid potential hazards indepen-
dently. Channel 1 may have a functional insufficiency and Channel 2 may have a different func-
tional insufficiency. Assuming that the channel fusion element has no functional insufficiency,
then a potential functional insufficiency in either channel is a multiple-point functional insuffi-
ciency.

Figure 62 shows a simple causal model of dependent functional insufficiencies potentially
causing hazardous behavior, considering the 2-channel example. The combinations of single
or multiple triggering conditions, as well as commonalities in the functional insufficiencies of the
channels determine this dependency.

185www.the-autonomous.com

Figure 62: Causal model for dependent functional insufficiencies for a system of two channels. Adapted from ISO 21448:2022, Figure C.18.

At the system level, the mitigation of inter-channel dependencies is required. This is achieved
by different methods:

• Analysis of dependencies:
▪ Dependency analysis of the channels including known phenomena.
▪ Analysis of functional insufficiencies observed in other systems using similar sensors or

functions.
▪ Analysis of single-channel functional insufficiencies observed during development or

via field monitoring providing evidence that the other channel is not affected by this
issue.

• “Error guessing” for verification and validation:
▪ Testing and simulation to show that the system does not expose guessed common

cause or cascading output insufficiencies.
▪ Systematically designing the validation field tests in a way that all the known or

hypothesized technical weaknesses of the system elements are sufficiently tested.

• SOTIF-related safety measures:
▪ Mechanisms that are shown to mitigate common cause functional limitation
▪ Functional modifications
▪ Addition of new elements (e.g., diverse sensor modality)

5.4.3 COUPLING FACTORS AND DEPENDENT FAILURE/FUNCTIONAL AND OUTPUT IN-
SUFFICIENCY INITIATORS
When two architectural elements fail simultaneously (i.e., within a short enough time interval to
have the effect of simultaneous failures), they might fail not just on pure coincidence but on the
basis of a common characteristic or due to a relationship with each other. In accordance with
ISO 26262 we call such a basis for a joint failure a coupling factor. Yet a coupling factor alone
does not make a dependent failure. A dependent failure is enabled by a coupling factor but
needs to be triggered by what ISO 26262 calls a dependent failure initiator (DFI). The interacti-
on between the two aspects is well described in the following sub-chapters dedicated to Func-
tional Safety and SOTIF. A DFI can be either a random hardware fault (e.g., a fault in a shared
resource with a physical root cause such as electromigration) or a systematic fault (e.g., a de-
velopment fault or a manufacturing fault) that manifests as a root cause.

186 www.the-autonomous.com

The dependent failure initiators addressed in the two chapters below in many cases refer in a
generalizing way to incorrectness and non-availability. It shall be understood that incorrectness
of an intended functionality (irrespective of its cause) can lead to the unavailability of its out-
puts in a second step when a checker detects the incorrectness, and the outputs are discarded
by the system (see also introduction chapter). The following example shall make that aspect
more transparent to the reader: A CAN message might be unavailable which the schedule-
aware receiver can detect by a timeout monitor right away. On the other hand, if a CRC check
monitoring the intended transmission of a CAN message reveals that its signals have been cor-
rupted, the message will most likely be discarded by its receiver and will no longer be availa-
ble. So, both initiators result in non-availability of the signals.

5.4.3.1 FUNCTIONAL SAFETY COUPLING FACTORS AND DFIS

Various coupling factors exist that can lead to a dependence of failure of two architectural ele-
ments in combination with a single root cause. ISO 26262-9:2018 Annex C separates them into
the following coupling factor classes (see also Figure 63):

5.4.3.1.1 SHARED INFORMATION INPUT
The two architectural elements are connected to the same source of information and therefore
process the same data. If this data is incorrect or not available (due to systematic faults or ran-
dom HW faults, both elements will be affected. The resulting dependent failure is a common
cause failure.

5.4.3.1.2 COMMUNICATION
One of the two architectural elements receives information from the other one through a com-
munication channel. If this information is incorrect or not available (whether due to systematic
faults or random HW faults), both elements will be affected. The resulting dependent failure is
a cascading failure.

5.4.3.1.3 COMPONENTS OF IDENTICAL TYPE
The two architectural elements employ instances of identical or very similar components. This is
also referred to as homogenous redundancy of these components. If these components mal-
function in such a way that their outputs are either incorrect or not available due to an (identi-
cal) systematic fault within a relevant time span (emergency operation time interval), a depen-
dent failure arises, which is a common cause failure. Per the nature of this coupling factor, this
common characteristic of the elements relates only to systematic faults.

Random hardware faults can occur in any components of the two architectural elements, irre-
spective of whether they are of identical type or diverse (in other words with a coupling or wi-
thout a coupling). A joint failure of redundant elements because of a simultaneous appearance
of independent random hardware faults is usually considered to be very unlikely.

5.4.3.1.4 (POTENTIAL) UNINTENDED INTERFACE
The two architectural elements have an unknown potential for an unintended interface,
through which a cascading fault can let both elements fail simultaneously. The unintended in-
terface is evoked by a dependent failure initiator which is of either systematic faults or random
nature.

5.4.3.1.5 SYSTEMATIC COUPLING
The two architectural elements fail due to a common systematic tool error or a common syste-
matic human error. As the naming of the coupling factor reveals, the associated dependent
failure initiator is of a systematic nature.

187www.the-autonomous.com

5.4.3.1.6 INSUFFICIENT ENVIRONMENTAL IMMUNITY
The two architectural elements have the same or similar physical characteristics, weakness, or
sensitivity which can be affected by the same external environmental disturbance which is the
dependent failure initiator. The resulting dependent failure is a common cause failure.

5.4.3.1.7 SHARED RESOURCE
The two architectural elements use the same system, hardware, or software element instance.
If this common element instance is faulty or unavailable, both architectural elements will be
affected. The resulting dependent failure is a common cause failure. The dependent failure in-
itiator can be either a systematic fault or a random hardware fault of the shared resource.

Figure 63: Overview of possible coupling factors. Adapted from ISO 26262-9:2018, Figure C.1.

As already mentioned in 5.4.1, intra- and inter-channel Independence follow the same basic
approach, but each presents distinct challenges that must be addressed while considering all
availability and correctness aspects. Table 25 constitutes a juxtaposition of the respective im-
portance of the coupling factors which makes this statement more tangible.

Note: A typical intra-channel Independence is the one between an intended functionality and
its monitor (safety mechanism). This independence is also the basis for applying an ASIL de-
composition between them.

Insufficient
environmental
immunity

Shared
information
input

Systematic
coupling

CommunicationShared
resource

Unintended
Interface

Architectural element 1
e.g., C-DCF Doer, L-DCF Primary unit

Architectural element 2
e.g., C-DCF Fallback, L-DCF Safing unit

Components of
identical type

188 www.the-autonomous.com

Table 25: Juxtaposition of importance of coupling factors for intra- and inter-channel independence.

Coupling
factor class Intra-channel independence Inter-channel independence

Communi-
cation

Relevance: high
Remark: Communication between in-
dependent elements within a chan-
nel usually cannot be avoided (the
related plausible dependent failures
must be resolved)
Resolution: Receiving components
needs to be robust with respect to er-
roneous inputs (e.g., E2E check, ro-
bustness for babbling idiot, voltage
spikes, …) and the sending com-
ponents must provide data with the
highest ASIL.

Relevance: medium
Resolution: The coupling factor can
be removed or avoided by taking the
design decision not to communicate
between independent channels. If
not feasible, the receiving channel
needs to be robust against erroneous
inputs and/or the data must be pro-
vided by the respective channel with
the highest ASIL (fault avoidance).

Components
of identical
type

Relevance: low
Remark: Every component has its
specific purpose.

Relevance: high
Remark: It is very likely that a decision
for an extra channel results in com-
ponents of identical type being used.

Unintended
interface

Relevance: high
Remark: As an example, it is very like-
ly that the independent SW com-
ponents of intended functionality and
its monitoring share the same RAM
which can result in interference. Fur-
thermore, it is likely that HW com-
ponents are close to each other, lea-
ding to crosstalk.

Relevance: medium
Remark: While physical separation
can come naturally by deploying
each channel on separate HW, cost
pressure can quickly lead to both
channels being exposed to potential
unintended interfaces by shared HW.
These unintended interfaces can be
between SW components or HW
components.

Shared
resources

Relevance: high
Remark: The relevance is high be-
cause of:

• SW components are executed on
same HW

• usage of same libraries for SW

Relevance: medium
Remark 1: While deploying each
channel on separate HW excludes
the sharing of resources, cost pressu-
re can quickly lead to two channels
sharing, for instance, infrastructure
like clock, power rails
Remark 2: Shared resources for SW
also need to be considered, as usa-
ge of the same libraries has the same
exposure as within a channel.
Remark 3: Special attention is nee-
ded for shared resources that are ex-
ternal to the channels (e.g., same
power supply).

189www.the-autonomous.com

A general difference between intra- and inter-channel independence is the resulting scale of
components required to be independent, since independent channels means that every com-
ponent of one channel needs to be independent from every single component of the other
channel (n:n relation of independent components). Accordingly, effort-wise there is a major
difference when analyzing the required independence.

5.4.3.2 SOTIF COUPLING FACTORS AND DIIS
In this section we apply the concept of dependent failures used in ISO 26262 to address the
independence topic in the context of SOTIF. We use the term coupling factor in an analogous
way and refer to Dependent output Insufficiency Initiator (DII) instead of dependent failure initi-
ator (DFI).

Table 26 contains a non-exhaustive list of coupling factor classes that are applicable for SOTIF.
Note that some coupling factors defined for ISO 26262 dependent failures are still considered,
while new (sub)classes are also proposed. The intention is to facilitate the identification of SO-
TIF-related coupling factors and therefore support a more systematic, comprehensive, and
complete dependent insufficiencies analysis.

Coupling
factor class Intra-channel independence Inter-channel independence

Shared in-
formation
input

Relevance: low
Remark: the Intended functionality
and corresponding checker usually
use different inputs

Relevance: high
Remark: Addition of an extra channel
within an ADI is prone to shared in-
formation input, e.g., same sensor in-
puts.

Systematic
coupling

Relevance: high
Remark: it is likely that the com-
ponents within a channel are develo-
ped by using the same tools or are
produced following the same pro-
duction process.

Relevance: high
Remark: it is likely that the com-
ponents within a channel are develo-
ped by using the same tools or are
produced following the same pro-
duction process.

Insufficient
environmen-
tal immunity

Relevance: high
Remark: Environmental influences
can affect all independent HW com-
ponents in a channel.

Relevance: high
Remark: Environmental influences
can affect all independent HW com-
ponents in two independent chan-
nels.

190 www.the-autonomous.com

Table 26: SOTIF-related coupling factors.

5.4.4 RESOLUTION STRATEGIES FOR IDENTIFIED PLAUSIBLE CAUSES OF DEPENDENT
FAILURES AND OUTPUT INSUFFICIENCIES

Every identified plausible dependent failure (i.e., combination of a coupling factor and a de-
pendent failure initiator) and every identified plausible dependent functional insufficiency (i.e.,
an identical insufficiency due to the same triggering condition or different insufficiencies with
statistically dependent triggering conditions) needs to be resolved in order to achieve indepen-
dence.

According to ISO 26262 a resolution of dependent failures includes “measures for preventing
their root causes, or for controlling their effects or for diminishing the coupling factors”. For two
redundant channels, whose independence is jeopardized, “controlling the effect” is not feasible
without a third channel. Such a third channel can be considered as an external safety mecha-
nism (i.e., external with respect to the two functional channels which are undergoing an analy-
sis of dependent failures). A practical example of such an external safety mechanism is a brake
system that performs a braking maneuver within the latest trajectory if both redundant channels
of the ADI fail simultaneously and no new trajectories or related setpoints are provided anymore
to the actuator systems. Such an approach is good to have as a “fallback from a fallback” but
shall not reduce the rigor with which the first two functional channels are kept independent.

Coupling factor class Application/Examples

Components of identical
type/similar sensors

• Different channels using the same sensor modalities and/or
technologies, which are not able to cope with specific trigge-
ring conditions, e.g., adverse weather conditions, as DII.

• Different sensor modalities that share common limitations,
e.g., radar and lidar simultaneously failing to recognize statio-
nary objects (see [78]).

Components of identical
type/similar algorithms

• Similar algorithms (e.g., perception or planning algorithms,
including probabilistic calculations, machine learning ap-
proaches) with common performance insufficiencies are used
in different channels.

Components of identical
type/similar actuators

• Actuators sharing common performance limitations. For exam-
ple: common limitations regarding environmental conditions
(e.g., cold, damp) or load conditions.

Systematic coupling/com-
mon specification insuffi-
ciency

• Common inaccurate specifications (e.g., ODD conditions),
common inaccurate acceptance criteria for performance re-
quirements (e.g., false positive and false negative criteria for
perception detection), among other kinds of insufficiency of
specification, which is used for the development, including
testing, of different channels.

Systematic coupling/com-
mon data during develop-
ment

• The same data is used during the development of the percep-
tion, planning, or actuator algorithms in components of diffe-
rent channels that lead to the same functional insufficiency.

• Examples of such data: insufficient scenarios to cover the
ODD, inappropriate training data for ML-based perception
approaches, inappropriate configuration data.

191www.the-autonomous.com

The examples of Functional Safety resolution strategies listed below in Table 27 either diminish
the coupling factors or prevent/reduce the probability of the root causes. A clear distinction of
the two approaches is not always possible (e.g., for a diverse configuration of identical SW
components being used) but also of low relevance. What really matters is that the likelihood of
a dependent failure is reduced by methods that can be reasonably argued.

All the examples of SOTIF resolution strategies listed below in Table 28 aim at diminishing the
coupling factors because the occurrence of external triggering conditions can neither be avoi-
ded, nor their occurrence frequencies reduced. Diminishing coupling factors in the context of
SOTIF means removing the common functional insufficiency (e.g., design weakness) itself an-
d/or implementing safety mechanisms (e.g., design defenses) against the activated functional
insufficiency, at least in one of the affected architecture elements. A potential alternative to
such “system modification” measures are strategies related to “functional restrictions” [3], which
aim to degrade or limit the intended functionality – for example, by restricting the ODD to exclu-
de known scenarios containing the (common) activating triggering condition (DII).

Choosing the right architectural candidate is a first step towards avoiding coupling factors sin-
ce asymmetric architectures will reduce susceptibility to CCFs significantly. Once the decision is
taken, the most evident way to diminish a coupling factor between two independent FCUs du-
ring the implementation of an architectural candidate is to remove it by a design change (inter-
nal or external) of the architectural elements required to be independent. As an example, a
single power supply for two independent channels constitutes a Functional Safety coupling fac-
tor of the class “shared resources”. It can be removed by integrating two independent power
supplies instead of a single one. As another example, the usage of two identical SW com-
ponents in two independent channels constitutes a coupling factor of the class “components of
identical type”. It can be removed by replacing them with two diversely designed and imple-
mented SW components but also interlocking or disabling of its features on one of the functional
channels during ADS in active state). Other resolution strategies diminish the coupling to ac-
ceptable limits, rather than absolutely removing it on a design level. As an example, a suitable
housing diminishes a coupling of the class “insufficient environmental immunity” to acceptable
limits with compliance to an EMI standard.

After the resolution of every identified plausible dependent failure and every identified plausi-
ble dependent functional insufficiency, the two channels can be regarded as sufficiently inde-
pendent.

A quantification of unidentified dependent failures during random hardware metric evaluation
by a beta factor as suggested by safety standards like IEC 61508 or EN 62061 is not considered
feasible by ISO 26262 “since no general and sufficiently reliable method exists for quantifying
such failures.” (ISO 26262-9:2018 clause 7.4.2).64

64 The only quantification that can be reasonably performed is the one of a “shared HW resource” (coupling factor “shared resources”). The random
hardware failures of such a shared HW resource can be considered in the hardware metric calculation as single point faults. Hint: The coupling
“Shared information input” might also be related to random hardware faults metric considering HW faults that affect the “Shared Information Input”.

192 www.the-autonomous.com

Table 27: Functional Safety-related examples for resolution strategies.

Coupling
factor class Examples of resolution strategies

Shared
information
input

• HW: Diverse redundancy of inputs providing diverse sources of data (e.g.,
cameras, radar, LiDAR) and performing voting, use of predictive models to
rely on prediction until valid data is restored.

• HW+SW: provision of the shared input with the highest ASIL, this including
the communication links (hint: only affective for systematic faults, not ran-
dom hardware faults, which need to be considered as single point faults
during PMHF evaluation)

Communica-
tion

• HW: Use of multiple, diverse, and independent communication channels
with data integration checks with respect to failure modes according to ISO
26262-6:2018 clause D.2.4, to ensure that the data can be correctly received
or transmitted even if one channel fails. The cascading of wrong values from
one channel to the other channel can only be avoided by enforcing fail-si-
lent behavior.

• HW+SW: If information is shared between two channels that shall be inde-
pendent, the information source and also the communication link shall be
implemented in the highest ASIL.

Components
of identical
type

• HW: Using diversely designed components including logic inversion, timing
delay and incorporating robust design and testing strategies or diverse
technologies (e.g., FPGA versus MCU).

• SW: Implementing diversely designed SW components for the same task to
reduce the risk of common cause failures due to software bugs.

• HW+SW: development of the component according to the highest ASIL
(hint: intended functionality itself must be developed according to the hig-
hest ASIL, which might be impractical)

• Diversification of homogeneous redundancy by diverse configuration, di-
verse inputs for SW or HW, diverse SW running on homogeneously redun-
dant microcontrollers

Unintended
interface

• HW: Physical separation by placing components in different locations to avo-
id simultaneous failure due to localized DFIs, e.g., for avoidance of crosstalk.

• SW: Usage of memory protection unit for separate SW components of diffe-
rent ASIL that use the same physical memory, to ensure Freedom from Inter-
ference, i.e., prevent overwriting of each other’s memory (note that interfe-
rence needs to be blocked and not just detected and reacted to). Using a
(safe and/or secure) certified hypervisor. Such hypervisors provide inde-
pendent containers allowing different SW possibly accompanied by diffe-
rent operating systems to operate on the same hardware

• HW+SW: Advanced System-on-Chip (SoC) components generally incorpo-
rate various CPU and accelerator configurations that share the same ad-
dress space. CPU-centric mechanisms like memory protection units act as
the initial defense against cascading software failures within a specific
CPU. They may prove insufficient within complex SoCs that consist of multi-
ple CPUs. Vendors have introduced supplementary hardware combined
with proprietary firmware and hardware mechanisms to manage FFI in a
multi-master configuration (e.g., multiple CPUs and DMAs sharing the
same memory) within the SoC. Utilizing these mechanisms helps to enforce
FFI between various combinations of DMAs and CPUs.

193www.the-autonomous.com

In addition to the coupling-specific resolution strategies mentioned in the table above in a more
general way models can serve as virtual sensors in some cases, replacing faulty or missing sen-
sor inputs to maintain availability requirements. These models leverage historical data, system
dynamics, and machine learning algorithms to estimate critical parameters, such as vehicle
speed or object distance, when actual sensor data is compromised. By providing accurate and
reliable estimations, these models help to prevent dependent failures ensuring redundant sub-
systems remain operational. This capability is vital in fail-operational designs, where maintai-
ning functionality during sensor faults is essential for safety and availability.

Dynamic reconfiguration is an important strategy to address dependent failures while maintai-
ning availability requirements. This approach involves real-time adaptation of system behavior
in response to faults or degraded components, such as faulty sensors, ECUs, or communication
links. For instance, if a sensor fails that provides shared input to ECUs, which shall be indepen-
dent, the system can dynamically reconfigure to rely on alternate inputs, redundant com-
ponents, or predictive models to maintain functionality.

Predictive maintenance is a proactive strategy that uses real-time data, analytics, and machine
learning models to predict the health and remaining life of critical components. By continuously
monitoring sensors, ECUs, and other system elements, predictive maintenance identifies early
signs of wear, degradation, or failure before they lead to system downtime. In the context of
dependent failures, the predictive maintenance technique can detect potential faults, such as
sensor failures or ECU malfunctions being involved in couplings, and trigger maintenance or
reconfiguration actions to prevent system-wide disruptions This by addressing potential faults

Coupling
factor class Examples of resolution strategies

Systematic
coupling

• HW: Using diverse component suppliers (assuming that they have different
production processes) by sourcing similar components from different sup-
pliers to mitigate the risk of common manufacturing defects, physical sepa-
ration / isolation, etc.
In general: Usage of different production and supply processes

• SW: Usage of different compilers or even programming languages, usage
of certified compilers

Insufficient
environmen-
tal immunity

• HW: Robust environmental protection by use of shielding and protective en-
closures to guard against moisture, electromagnetic interference, tempera-
ture, physical separation / isolation, etc.
Possibly, implement logic inversion, timing delays, physical and environmen-
tal separation to prevent environmental factors from affecting all inputs si-
multaneously.
Utilizing PCB design techniques and guidelines to reduce EMI.

Shared
resource

• HW + SW: Development of the Shared Resource according to the highest
ASIL (hint for HW: only affective for systematic faults, not random hardware
faults, which need to be considered as single point faults during PMHF, see
above)

• HW: Functional redundancies within shared elements itself, e.g., diverse
redundant, and isolated power supply paths to ensure availability in case
one path fails, ECC for shared memories, ability of identifying, isolating and
dynamically reconfiguring a failing shared resource, etc.

• SW: When being executed on the same target: use of interrupt priority sche-
mes, memory and peripheral access protection.

194 www.the-autonomous.com

proactively, which ensures that components are serviced or replaced before their failure affects
availability, supporting the fail-operational requirements of the system and maintaining overall
safety and functionality.

Table 28: SOTIF-related examples for resolution strategies.

5.4.5 INDEPENDENCE METRIC

Identifying the potential for plausible dependent failures and dependent functional insufficien-
cies and resolving them are unnegotiable stages on the track to Sufficient Independence. It is
the stage of resolution that brings up the difficult question for the diligent engineers that is al-
ready addressed in the introduction: Is the achieved independence sufficient – in the sense that
the item, into which the analyzed independent architectural elements are integrated, is safe
enough?

The achievement of absolute independence is considered impossible, which is also true for ab-
solute safety itself. Following the definition of Functional Safety in ISO 26262:2018, it is not the
avoidance of any risk that needs to be ensured, but the avoidance of unreasonable risk – an
insight which is the basis for its clauses. The room for interpretation when judging the sufficiency
of independence might be significant, yet it can be narrowed with an objective methodological
approach that supports the achievement of functional safety in multiple facets. The diligent en-
gineer is supported by it and as a positive side-effect, design decisions are less prone to be
influenced by non-technical aspects (e.g., approaching deadlines, estimated efforts excee-
ded, lacking expertise, …).

The key question when setting up an objective methodology for judging sufficient indepen-
dence is whether to go for a qualitative or quantitative approach. A qualitative approach tends

Coupling factor class Examples of resolution strategies

Components of identical type/
similar sensors

• HW: Use of diverse sensor technologies, conside-
ring, e.g., increased resolution of sensor measure-
ment, improved sensor disturbance detection.

• SW: Application of sensor fusion algorithms.

Components of identical type/
similar algorithms

• Use of different algorithms for perception, e.g., sta-
tistical methods and ML-based approaches.

• Use of different algorithms for planning, e.g., consi-
dering different approaches for situation analysis,
prediction models.

Components of identical type/
similar actuators

• HW: Use of diverse actuator technologies, conside-
ring, e.g., increased accuracy, reduction of respon-
se times.

Systematic coupling/common
specification insufficiency

• Application of state-of-the-art development proces-
ses.

Systematic coupling/common
data during development

• Use of different sources of data, collected in real
traffic situations (field tests) and generated by simu-
lations.

• Application of data validation methods, e.g., cross-
validation, separation of training and test data.

195www.the-autonomous.com

to go hand in hand with a binary judgement on whether dependencies are there at all in a
given (architectural) design or not, which likely is a too theoretical approach because in real-
world automotive designs not every dependency can be removed. That is why the challenge
lies rather in identifying all possible dependencies and judging their plausibility by evaluating
the rate of occurrence of related dependent failures and functional insufficiencies – thus the
probability of a violation of the availability safety goal (considering the focus in this report on
the independence requirement between channels – see introduction). For plausible dependent
failures the mentioned probability needs to be reduced by the application of the outlined reso-
lution strategies. This intent is very well in line with ISO 26262, which introduces the “sufficient
independence” terminology (absence of reasonably foreseeable dependent failures). The com-
bination of these signposts of ISO 26262 can be associated more with a quantitative evaluation
(“credible or measurable rate of occurrence”) than a mere qualitative decision of either an “in-
dependent” or a “dependent” status. ISO 21448 is not mentioned here because it does not ela-
borate the Independence topic in detail as ISO 26262 does. However, its statements can be
easily transferred from the world of dependent failures to the world of dependent functional
insufficiencies.

The refined approach proposed by the Safety & Architecture working group is a semi-quantita-
tive one in the sense that the resolution strategy examples presented above shall be judged by
their ability to reduce the probability of a violation of the availability safety goal by allocating
them to “Independence Coverage” categories.

The proposed “Independence Coverage” categories are as follows:

HIGH:
Probability of CC fault or functional insufficiency or CF affecting the
item availability within the EOTI reduced by 99%

MEDIUM:
Probability of CC fault or functional insufficiency or CF affecting the
item availability within the EOTI reduced by 90%

LOW:
Probability of CC fault or functional insufficiency or CF affecting the
item availability within the EOTI reduced by 60%

with

CC … common cause

CF … cascading fault

EOTI … emergency operation time interval

Note 1: “… within the EOTI …” refers to “Dependent failures can manifest themselves simulta-
neously, or within a sufficiently short time interval, to have the effect of simultaneous failures.”
(ISO 26262-1:2018 3.29)”

Note 2: Considering the ISO 26262 risk definition, the probability reduction can be understood
as a risk reduction.

The allocation process for the Independence Coverage is again based on an engineering jud-
gement. However there is a major difference with respect to individual engineering judgments
being influenced by attitudes that were discourages in the beginning of the chapter: Indepen-
dence Coverages (taking into account parameters like component complexity, configuration

196 www.the-autonomous.com

space, etc.) are to be determined by an expert circle and shall be made available in an orga-
nization-internal guideline or even standardized (at least informatively and as a starting point
of discussion with a need to take into account the pre- and border- conditions of a given con-
text). Furthermore, the Independence Coverages are not situational because they are not deci-
ded in the heat of the moment within an automotive engineering project but deliberately and
thus more objectively in calm times, which is a solid base for executing fail-degraded automo-
tive projects.

Hint: This methodology resembles the ISO 26262 approach for judging the effectiveness of ap-
plied safety mechanisms for detecting and mitigating random hardware faults, i.e., their dia-
gnostic coverage (see ISO 26262-5:2018 Annex D).

Sufficient independence is achieved if an Independence Coverage of 99% (i.e., a “HIGH” clas-
sification) is achieved for all identified potentials of plausible dependent failures and depen-
dent functional insufficiencies. This can be achieved either by deciding for the application of a
resolution strategy that is allocated to an Independence Coverage of “HIGH” right away, or
alternatively by combining resolution strategies that have been allocated to a lower category.
This approach offers the following combinations of categories with the described resulting out-
comes for an Independence Coverage:

MEDIUM + MEDIUM = HIGH
rationale: equality of categories’ risk reduction:
(1 – 0.90) x (1 – 0.90) = 0.01 = (1 – 0.99)

LOW + LOW = MEDIUM
rationale: equality of categories’ risk reduction:
(1 – 0.60) x (1 – 0.60) = 0.16 ~ (1 – 0.90)

MEDIUM + LOW = HIGH
rationale: equality of categories’ risk reduction:
(1 – 0.60) x (1 – 0.90) = 0.04 ~ (1 – 0.99)

IMPORTANT: Be aware that the combinations above are based on the assumption of indepen-
dence of applied Independence Measures. Whether this assumption holds true shall be inves-
tigated by the applier for the respective combination at least based on engineering judgement.
As an example, the combination of two MEDIUM measures (diverse inputs and diverse confi-
gurations) for two homogeneous software components seems reasonable to achieve HIGH in-
dependence, but expert judgement is needed to rule out overlapping effects that render this
evaluation too optimistic.

Example: Developing the combination of an SOC + platform SW that is deployed to both func-
tional channels of an ADI according to ASIL D fault avoidance can be regarded as an Indepen-
dence measure with a MEDIUM Independence Coverage – this taking the complexity of the
SOC, the platform SW65 and also their multitude of interactions into account. An additional In-
dependence with at least an Independence Coverage LOW is needed. Diversifying the homo-
geneity of the combination SOC + platform SW by differently configuring the platform SW and
also running different application SW on it can be argued as a resolution strategy with at least
LOW Independence Coverage. Applying both these independent resolution strategies results
in a HIGH Independence Coverage. This means that the potential for dependent failures due
to the coupling “components of identical type” is sufficiently resolved.

65 It is considered impossible to avoid all design faults in complex safety-related elements, especially for large, complex software [25], like a platform
SW.

197www.the-autonomous.com

OUTLOOK
With the publication of the second edition of our report, the Safety & Architecture working group
is entering a new phase. Building on the momentum and insights gained so far, we will continue
our activities in a refreshed format that maintains a focused and collaborative exploration of
key challenges in the field of automated driving (AD).

To date, our efforts have culminated in a comprehensive report that describes and evaluates
conceptual system architectures suitable for an AD Intelligence. This achievement was made
possible through the valuable contributions of a diverse group of collaborators from both aca-
demia and industry. Their input has helped ensure that the report reflects a broad spectrum of
perspectives and expertise.

Looking ahead, we intend to use this report as a foundation for deep dives on specialized to-
pics. These efforts will be carried out in smaller, interest-driven groups and will result in a series
of white papers that build upon and extend the findings of the main report.

We have identified three particularly relevant topics for this next phase. These topics broaden
the scope of our work to include systems adjacent to the AD Intelligence and address a critical
implementation challenge where architectural measures can provide significant value:

• Sensor System Redundancy: Automated driving systems rely on a combination of sensor
modalities—such as cameras, radar, and lidar—to perceive their environment. Redundan-
cy is needed not only to achieve high availability, but also to compensate for each sensor’s
specific weaknesses. Ensuring sufficient independence between redundant sensors is es-
sential for safety yet remains an open question. We aim to explore how such indepen-
dence can be achieved and evaluated in practice.

• Actuator System Redundancy: Redundant actuators are equally vital for safe operation.
The actuators in the vehicle (steering, braking, and powertrain) need to jointly ensure that
a single, consistent vehicle trajectory is followed to achieve safe and stable behavior. Dif-
ferent architectural solutions exist to achieve such consistency between actuators or to
detect inconsistencies/errors when they arise. We will investigate these approaches and
their implications for system design and safety assurance.

• Safe AI-Based Systems: AI (or more specifically ML) plays a central role in many functional
blocks of the AD stack, particularly in perception, but increasingly also in prediction and
planning. Some organizations are exploring end-to-end (E2E) AI models for their AD sys-
tems. However, a holistic approach to ensuring the safety and regulatory compliance of AI
in this context is still lacking. We propose to develop such an approach by integrating ar-
chitectural measures, development processes, and monitoring measures.

We invite all interested parties to join us in these follow-up efforts. Your expertise and engage-
ment will be crucial as we tackle these complex and evolving challenges together.

Finally, we would like to express our sincere gratitude to all current and past contributors, as
well as to our external reviewers, for their dedication and valuable input throughout this jour-
ney.

198 www.the-autonomous.com

TERMINOLOGY
TERMINOLOGY FROM STANDARDS AND LITERATURE

The “Safety & Architecture” Working Group makes use of the terminology laid out in different
industry standards and literature. Please refer to the listed standards for all terms not specifi-
cally defined in the following.

A small number of terms have been added as new definitions to clarify the scope of the “Safety
& Architecture” Working Group.

For terms related to systems, faults, and failures, we use the following (in order of preference):

• ISO 26262:2018 “Road vehicles – Functional safety” [2]

• IEC 61508:2010 “Functional safety of electrical/electronic/programmable safety-related
systems” [30]

• ISO 21448:2022 “Road vehicles – Safety of the Intended Functionality” [3]

• Algirdas Avizienis, J-C. Laprie, Brian Randell, and Carl Landwehr. “Basic concepts and ta-
xonomy of dependable and secure computing.” IEEE transactions on dependable and se-
cure computing 1, no. 1 (2004) [1]

For terms related to AD, we use the following (in order of preference):

• ISO/SAE PAS 22736 “Taxonomy and definitions for terms related to driving automation sys-
tems for on-road motor vehicles” [79] (based on SAE J3016_202104 [7])

• BSI PAS 1883:2020 “Operational Design Domain (ODD) taxonomy for an automated dri-
ving system (ADS) - Specification” [80]

Please also refer to the relevant databases maintained by ISO and IEC:

• https://www.iso.org/obp/ui

• http://www.electropedia.org/

199www.the-autonomous.com

Term Reference or definition Notes

AD Intelligence computational unit between the
sensors and actuators

Architecture ISO 26262:2018-1

Automated Driving Sys-
tem (ADS) ISO/SAE PAS 22736

Availability ISO 26262-1:2018

Cascading failures ISO 26262-1:2018

In literature, one will often find the following dif-
ferentiation: Failures of redundant systems due to
systematic weaknesses of the architecture are
caused by common cause initiators (CCI) and
coupling faults (= ISO 26262 cascading faults). In
many standards this differentiation is not done,
e.g., IEC 61508-6:2010, Annex D: The term CCF is
often used to cover all kinds of dependent failu-
res as it is done in this annex. According to an Exi-
da 2010 Safetronic paper, ISO 26262 is the first
standard to distinguish between the two distinct
phenomena.

Channel

subsystem, i.e., a separable
building block of a system,
composed of a perception ele-
ment, and a planning element,
i.e., the plan stage of the so-
called “sense, plan, act” model
of automated driving, in other
words the end-to-end functio-
nality from sensor input to tra-
jectory output.

According to IEC 61508 a channel “implements in-
dependently an element safety function”, which
can be understood as a safety mechanism in ISO
26262:2018 terminology. In contrast, within the
context of this report a channel implements a safe-
ty-related function (which includes the intended
functionality) and is not necessarily independent
from other channels. Independence is an additio-
nal requirement for a channel.

Common cause failure
(CCF) ISO 26262-1:2018

Common mode failure
(CMF) ISO 26262-1:2018

System-level Conceptu-
al architecture

An abstract, high-level archi-
tecture that does not specify
technical (e.g., HW, SW) com-
ponents.

This is similar to the “Functional Safety Concept”
required by ISO 26262:2018-3.

Controllability ISO 26262-1:2018

Coupling factors ISO 26262-1:2018

Dependability Avizienis, TR 2004-47

• The paper defines this as encompassing the
following attributes (quote):

• availability: readiness for correct service [see
also ISO 26262-1:2018]

• reliability: continuity of correct service
• safety: absence of catastrophic consequences

on the user(s) and the environment [see also
ISO 26262-1:2018]

• integrity: absence of improper system alterati-
ons

• maintainability: ability to undergo modifications

Dependent failures ISO 26262-1:2018

Dependent failure initia-
tor (DFI) ISO 26262-1:2018

200 www.the-autonomous.com

Term Reference or definition Notes

Diagnostic coverage
(DC) ISO 26262-1:2018

In the context of ISO 26262, this only covers HW
faults. For our purposes, we use the same term to
cover SW faults as well, which goes hand in hand
with the decision to quantify (systematic) SW
faults.

Diversity ISO 26262-1:2018

Dual-point failure ISO 26262-1:2018

Dual-point fault ISO 26262-1:2018

Dynamic Driving Task
(DDT) ISO/SAE PAS 22736

DDT fallback ISO/SAE PAS 22736

Dynamic elements BSI PAS 1883

Ego vehicle BSI PAS 1883 Used instead of “subject vehicle”.

Element ISO 26262-1:2018

Emergent behavior
Behavior that cannot be attributed to one indivi-
dual system alone, but arises in the interplay of
various systems, components etc.

Environmental
conditions BSI PAS 1883

Error ISO 26262-1:2018

Failure ISO 26262-1:2018

Fail-silent

In the case of a detected safety-related fault a
transition into a safe state is initiated in which the
intended functionality of an element is no longer
provided (depending on the element this can
mean a shut-off of communication to other ele-
ments or a shut-off of actuators)

Fault ISO 26262-1:2018

Fault-Containment Unit
(FCU)

subsystem with its own hard-
ware and software, whose
faults are prevented from pro-
pagating to its receivers.
Note 1: Fault propagation is
prevented by means of FCU-in-
ternal and/or external safety
mechanisms, which are desig-
ned to ensure absence of cas-
cading failures.
Note 2: Faults with a potentially
changed semantic (by an inter-
nal safety mechanism) propa-
gate via FCU interfaces. There-
fore, each interface of an FCU
should be defined so that the
system can react to such faults
(i.e., the failure modes of the in-
terfaces should be made known
to its receivers).

• On system level it will be a responsibility of the
receivers to manage the failure modes of an
FCU in a safe way.

• For system-level conceptual architectures we
assume that each FCU fails independently from
other FCUs. This requires an absence of com-
mon cause failures that needs to be ensured by
engineering measures. The assumption is inter-
preted to mean that potential dependent failu-
res may exist between FCUs defined in the ar-
chitecture, but must be mitigated by either
reducing the probability of the root cause, re-
ducing the coupling factors, or controlling their
effects.

• An arbitrary failure (including Byzantine failu-
res) of an FCU must not lead to a failure of the
complete ADI; ensuring this property is a key re-
quirement for the system-level conceptual ar-
chitectures.

Formal verification ISO 26262-1:2018

201www.the-autonomous.com

Term Reference or definition Notes

Functional insufficiency ISO 21448:2022
Insufficiency of specification or performance in-
sufficiency. Both terms are also defined in ISO
21448:2022.

Interface Avizienis, TR 2004-47 [1] The paper distinguishes between the “service in-
terface” and the “use interface”.

Item ISO 26262-1:2018

Hazard ISO 26262-1:2018

Malfunction ISO 26262-1:2018

Following the approach of ISO 21448:2022, mal-
functions in this report are associated as an unin-
tended behavior of an item due to faults. This is in
contrast to the output insufficiencies on element
level and functional insufficiencies on system level
of the intended functionality, which can lead to
similar hazardous behavior on the vehicle level.

Mapping

The process of transforming a
conceptual architecture into a
technical HW and/or SW archi-
tecture.

• The same conceptual architecture can be
mapped to many different HW / SW solutions.

• Certain considerations need to be applied du-
ring the mapping to ensure properties of the
conceptual architecture are not lost.

Minimal Risk Condition
(MRC) ISO/SAE PAS 22736

Minimal Risk Maneuver
(MRM) BSI PAS 1883

In a highway ODD, there are multiple possible
MRMs, e.g., reducing speed and continuing to the
next rest stop, pulling over to the emergency lane,
or coming to a controlled stop in the current lane.
These differ by their inherent safety and the capa-
bility and timeframe necessary to execute them.

Misuse ISO 21448:2022

An example of a direct misuse is the activation of
a highway pilot in an urban setting. An example
of an indirect misuse is a driver falling asleep and
not monitoring an L2 system during operation.

Monitor ISO/SAE PAS 22736

Object and Event
Detection and Response
(OEDR)

ISO/SAE PAS 22736

Operational Design Do-
main (ODD) ISO/SAE PAS 22736

Output insufficiency ISO 21448:2022

Passenger car ISO 26262-1:2018

Performance limitation ISO 21448:2022

Random hardware fault ISO 26262-1:2018

Request to intervene ISO/SAE PAS 22736

Routine/normal operati-
on ISO/SAE PAS 22736

Safety ISO 26262-1:2018

Safety architecture ISO 26262-1:2018

Safety case ISO 26262-1:2018

Safety Element out of
Context (SEooC) ISO 26262-1:2018

202 www.the-autonomous.com

Term Reference or definition Notes

Safety goal ISO 26262-1:2018

Scenery BSI PAS 1883

Service Avizienis, TR 2004-47

Severity ISO 26262-1:2018

System ISO 26262-1:2018

Systematic fault ISO 26262-1:2018

Triggering condition ISO 21448:2022

Validation ISO 26262-1:2018

Verification ISO 26262-1:2018

Vulnerable Road User
(VRU) BSI PAS 1883

203www.the-autonomous.com

REFERENCES
[1] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, "Basic concepts and taxonomy of

dependable and secure computing," IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, 2004.

[2] ISO, "ISO 26262:2018 Road vehicles - Functional safety," 2018.
[3] ISO, "ISO 21448:2022 Road vehicles - Safety of the Intended Functionality," 2022.
[4] Aptiv; Audi; Baidu; BMW; Continental; Daimler; FCA; Here; Infineon; Intel; Volkswagen,

"Safety First for Automated Driving," 2019.
[5] H.-P. Schoener and J. Antona-Makoshi, "Testing for Tactical Safety of Autonomous Vehic-

les," in 30th Aachen Colloquium Sustainable Mobility, Aachen, Germany, 2021.
[6] ISO, "ISO/SAE 21434:2021 Road vehicles - Cybersecurity engineering," 2021.
[7] SAE, "SAE J3016 Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle

Automated Driving Systems," 2021.
[8] Economic Commission for Europe - Inland Transport Committee, "Proposal for a new UN

Regulation on uniform provisions concerning the approval of vehicles with regards to Au-
tomated Lane Keeping System," 2020.

[9] H. Egerth and S. Yantis, "Visual Attention: Control, Representation and Time Course," An-
nual Review of Psychology, vol. 48, pp. 269-297, 1997.

[10] D. Dvorak, "NASA Study on Flight Software Complexity," Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, 2009.

[11] J. McDermid and T. Kelly, "Software in safety critical systems: achievement and predicti-
on," Nuclear Future, vol. 2, no. 3, pp. 140-146, 2006.

[12] J. Gray, "Why do computers fail and what can be done about it?," Tandem Computer
Corporation, 1985.

[13] G. Li, S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer and S. Keckler, "Understanding
error propagation in deep learning neural networks (DNN) accelerators and applicati-
ons," in Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2017.

[14] N. Kalra and S. Paddock, "Driving to Safety: How Many Miles of Driving Would It Take to
Demonstrate Autonomous Vehicle Reliability?," Transportation Research Part A: Policy
and Practice, vol. 94, pp. 182-193, 2016.

[15] R. Young, "Automated driving system safety: Miles for 95% confidence in "vision zero","
SAE International Journal of Advances and Current Practices in Mobility, vol. 2, no. 6, pp.
3454-3480, 2020.

[16] X. Zhang, J. Tao, M. Törngren, J. Gaspar Sanchez, M. Rusyadi Ramli, X. Tao, M. Gyllen-
hammar, F. Wotawa, N. Mohan, M. Nica and H. Felbinger, "Finding Critical Scenarios for
Automated Driving Systems: A Systematic Mapping Study," IEEE Transactions on Software
Engineering, vol. 49, no. 3, pp. 991-1026, 2023.

[17] Statistisches Bundesamt (Destatis), "Verkehrsunfälle 2018," 2020.
[18] P. Koushki and F. Balghunaim, "Determination and Analysis of Unreported Road Acci-

dents in Riyadh, Saudi Arabia," Journal of King Saud University - Engineering Sciences,
vol. 3, pp. 101-118, 1991.

[19] SAE, "SAE ARP4754A Guidelines for Development of Civil Aircraft and Systems," 2010.
[20] SAE, "SAE ARP4761 Guidelines and Methods for Conducting the Safety Assessment Pro-

cess on Civil Airborne Systems and Equipment," 1996.
[21] Y. Fu, J. Seemann, C. Hanselaar, T. Beurskens, A. Terechko, E. Silvas and W. Heemels,

"Characterization and Mitigation of Insufficiencies in Automated Driving Systems," in The
27th International Conference on the Enhanced Safety of Vehicles (ESV), Yokohama, Ja-
pan, 2023.

[22] UL, "ANSI/UL 4600 (Ed. 3) Evaluation of Autonomous Products," 2023.
[23] SAE, "SAE J3018 Safety-Relevant Guidance for On-Road Testing of Prototype Automated

Driving System (ADS)-Operated Vehicles," 2020.
[24] S. Shalev-Shwartz, S. Shammah and A. Shashua, "On a Formal Model of Safe and Scala-

204 www.the-autonomous.com

ble Self-driving Cars," Mobileye, 2017.
[25] H. Kopetz, "An Architecture for Driving Automation," 2020. [Online]. Available: http://

www.the-autonomous.com.
[26] J. Lala, in First IFIP Workshop on Intelligent Vehicle Dependability & Security, 2021.
[27] Statistik Austria, "Straßenverkehrsunfälle mit Personenschaden, Jahresergebnisse 2018,"

2019.
[28] P. Liu, R. Yang and Z. Xu, "How Safe Is Safe Enough for Self-Driving Vehicles?," Risk Ana-

lysis, vol. 39, no. 2, pp. 315-325, 2018.
[29] P. Koopman, "Safety Architecture Patterns," 2021. [Online]. Available: https://users.ece.

cmu.edu/~koopman/lectures/ece642/Xtra_SafetyArchPatterns.pdf. [Accessed 30 01
2025].

[30] IEC, "IEC 61508:2010 Functional safety of electrical/electronic/programmable safety-re-
lated systems," 2010.

[31] C. Hanselaar, E. Silvas, A. Terechko and W. Heemels, "Detection and Mitigation of Func-
tional Insufficiencies in Autonomous Vehicles: The Safety Shell," in IEEE 25th International
Conference on Intelligent Transportation Systems (ITSC), 2022.

[32] A. Armoush, "Design patterns for safety-critical embedded systems," PhD thesis, RWTH
Aachen University, 2010.

[33] M. L. Shooman, "Reliability of computer systems and networks: fault tolerance, analysis
and design," in N-Modular Redundancy, Wiley-Interscience, 2002, pp. 145-201.

[34] J. von Neumann, "Probabilistic Logics," in Automata Studies, Princeton University Press,
1956.

[35] R. Lyons and W. Vanderkulk, "The Use of Triple-Modular Redundancy to Improve Compu-
ter Reliability," IBM Journal, pp. 200-209, 1962.

[36] U. Santoni, R. Mariani and J. Weast, "Independent safety monitoring of an automated
driving system". United States Patent US20200017114A1, 23 09 2019.

[37] A. Terechko, Y. Fu, C. Hanselaar and K. Schuerman, "NXP Tech Blog," 3 2023. [Online].
Available: https://community.nxp.com/t5/NXP-Tech-Blog/Daruma-Design-Pattern-for-
Safe-and-Continuous-Automated-Driving/ba-p/1609514. [Accessed 21 1 2025].

[38] C. Hanselaar, E. Silvas, A. Terechko and W. Heemels, "Detection and Mitigation of Func-
tional Insufficiencies in Autonomous Vehicles: The Safety Shell," in 2022 IEEE 25th Interna-
tional Conference on Intelligent Transportation Systems (ITSC), Macau, 2023.

[39] Y. Fu, J. Seemann, C. Hanselaar, T. Beurskens, A. Terechko, E. Silvas and M. Heemels,
"Characterization and Mitigation of Insufficiencies in Automated Driving Systems," 15 4
2024. [Online]. Available: https://arxiv.org/abs/2404.09557. [Accessed 21 1 2025].

[40] C. Hanselaar, Y. Fu, A. Terechko, J. Seemann, T. Beurskens and E. Silvas, "Evaluation of the
Safety Shell Architecture for Automated Driving in a Realistic Simulator," in 2024 IEEE In-
telligent Vehicles Symposium (IV), Jeju Island, South Korea, 2024.

[41] H. Kopetz, "Method for controlling a technical device". Patent EP4009121B1, 07 12 2020.
[42] H. Kopetz, "Control system and method for the safe control of a technical System". Patent

EP4455812A1, 25 04 2023.
[43] M. Wagner, J. Ray, A. Kane and P. Koopman, "A safety architecture for autonomous vehic-

les". Patent EP3400676B1, 2017.
[44] T. Bijlsma, A. Buriachevskyi, A. Frigerio, Y. Fu, K. Goossens, A. O. Örs, P. J. van der Perk, A.

Terechko and B. Vermeulen, "A Distributed Safety Mechanism using Middleware and Hy-
pervisors for Autonomous Vehicles," in 2020 Design, Automation & Test in Europe Confe-
rence & Exhibition (DATE), Grenoble, 2020.

[45] Y. Fu, A. Terechko, J. Groote and A. Saberi, "A formally verified fail-operational safety con-
cept for automated driving," SAE Intl., pp. 7-21, 17 Jan 2022.

[46] Audi AG; BMW AG; Daimler AG; Porsche AG; VW AG, "Standardized E-GAS Monitoring
Concept for Gasoline and Diesel Engine Control Units," 2013.

[47] B. Kaiser, B. Monajemi Nejad, D. Kusche and H. Schulte, "Systematic design and validati-
on of degradation cascades for safety-relevant systems," in The 2nd International Confe-
rence on Engineering Sciences and Technologies, 2017.

205www.the-autonomous.com

[48] N. Mohan, P. Roos and J. Svahn, "System and Method for Controlling a Motor Vehicle to
Drive Autonomously". Patent WO2019125269A1, 27 06 2019.

[49] N. Mohan, J. Svahn and P. Roos, "System and method for controlling a motor vehicle to
drive autonomously". Patent WO2019125268A1, 27 06 2019.

[50] N. Mohan, M. Törngren and V. Izosimov, "Challenges in architecting fully automated dri-
ving; With an emphasis on heavy commercial vehicles," in Workshop on Automotive Sys-
tems/Software Architectures, 2016.

[51] M. Törngren, X. Zhang, N. Mohan, M. Becker, L. Svensson, X. Tao, D. Chen and J. West-
man, "Architecting Safety Supervisors for High Levels of Automated Driving," in Procee-
dings of the 21st IEEE Int. Conf. on Intelligent Transportation Systems, 2018.

[52] N. Mohan and M. Törngren, "AD-EYE: A Co-Simulation Platform for Early Verification of
Functional Safety Concepts," in WCX SAE World Congress Experience, Detroit, 2019.

[53] Audi, "zFAS the Brain of piloted Driving and Parking (nVIDIA GPU Technology Confe-
rence)," 2015. [Online]. Available: https://on-demand.gputechconf.com/gtc/2015/pre-
sentation/S5637-Matthias-Rudolph.pdf.

[54] udi, "Zentrales Fahrerassistenzsteuergerät," [Online]. Available: https://www.audi-me-
diacenter.com/de/fotos/detail/zentrales-fahrerassistenzsteuergeraet-52989. [Accessed
31 03 2025].

[55] Audi, "Audi A8 - Central driver assistance controller (zFAS)," 7 2017. [Online]. Available:
https://www.audi-technology-portal.de/en/electrics-electronics/driver-assistant-sys-
tems/audi-a8-central-driver-assistance-controller-zfas. [Accessed 21 11 2023].

[56] Tesla Inc., "Tesla AI Day 2022," 01 10 2022. [Online]. Available: https://www.youtube.
com/watch?v=ODSJsviD_SU&ab_channel=Tesla.

[57] AutoPilot Review, "Tesla Hardware 4 – Full Details and Latest News," 2023. [Online].
Available: https://www.autopilotreview.com/tesla-hardware-4-rolling-out-to-new-vehic-
les/.

[58] BMW Group, "Safety Assessment Report," 2020.
[59] J. Yoshida, "EE Times," 29 04 2020. [Online]. Available: https://www.eetimes.com/unvei-

led-bmws-scalable-av-architecture/.
[60] S. Shalev-Shwartz, M. Molnar, I. Granot, A. Shany and A. Shashua, "A Safety Architecture

for Self-Driving Systems," 2024. [Online]. Available: https://static.mobileye.com/website/
us/corporate/files/SDS_Safety_Architecture.pdf. [Accessed 28 01 2025].

[61] Mobileye, "True Redundancy," [Online]. Available: https://www.mobileye.com/techno-
logy/true-redundancy/. [Accessed 28 01 2025].

[62] S. Shalev-Shwartz, S. Shammah and A. Shashua, "On a Formal Model of Safe and Scala-
ble Self-driving Cars," 2017. [Online]. Available: https://arxiv.org/pdf/1708.06374. [Acces-
sed 28 01 2025].

[63] T. Wiltschko, "Mercedes-Benz DRIVE PILOT - A first step for automated driving and a gi-
ant leap for safety," in Keynote presented at Safetronic 2022, Stuttgart, Germany, 2022.

[64] M. Staron, Automotive Software Architectures: An Introduction, Springer Cham, 2021.
[65] ISO, "ISO/PAS 8926:2024 Road vehicles - Functional safety - Use of pre-existing software

architectural elements," 2024.
[66] ELISA, "Enabling Linux in Safety Applications," [Online]. Available: https://elisa.tech/.

[Accessed 08 04 2025].
[67] ISO, "ISO 24089 Road vehicles - Software update engineering," 2023.
[68] AUTOSAR, "Automotive Open System Architecture," [Online]. Available: https://www.au-

tosar.org/. [Accessed 08 04 2025].
[69] UNECE, "UN Regulation No. 155 - Cyber security and cyber security management sys-

tem," 2021.
[70] UNECE, "UN Regulation No. 156 - Software update and software update management

system," 2021.
[71] ISO, "ISO/TS 5083 Road vehicles — Safety for automated driving systems — Design, veri-

fication and validation," 2025.
[72] ISO, "ISO/IEC TR 5469:2024 Artificial intelligence — Functional safety and AI systems," 2024.

206 www.the-autonomous.com

[73] ISO, "ISO/PAS 8800:2024 Road vehicles — Safety and artificial intelligence," 2024.
[74] UNECE, "UN Regulation No. 157 - Automated Lane Keeping Systems (ALKS), Revision 1,"

2023.
[75] UNECE, "UN Regulation No. 157 Amend.4," 03 March 2023. [Online]. Available: https://

unece.org/transport/documents/2023/03/standards/un-regulation-no-157-amend4.
[76] ISO, "ISO/IEC 22989:2022 Information technology — Artificial intelligence — Artificial in-

telligence concepts and terminology," 2022.
[77] C. Hanselaar, M. Kumar, Y. Fu, A. Terechko, R. Prasad and E. Silvas, "Identification of Ha-

zardous Driving Scenarios Using Cross-Channel Safety Performance Indicators," in 2025
Design, Automation & Test in Europe Conference (DATE), Lyon, France, 2025.

[78] M. Werling, R. Faller, W. Betz and D. Straub, Safety Integrity Framework for Automated
Driving, arXiv preprint arXiv:2503.20544, 2025.

[79] ISO, "ISO/SAE PAS 22736:2021 Taxonomy and definitions for terms related to driving au-
tomation systems for on-road motor vehicles," 2021.

[80] BSI, "BSI PAS 1883:2020 Operational Design Domain (ODD) taxonomy for an automated
driving system (ADS) - Specification," 2020.

[81] Projekt Pegasus, "Projekt Pegasus," [Online]. Available: https://www.pegasusprojekt.
de/en/pegasus-method.

[82] M. Scholtes, L. Westhofen, L. Turner, K. Lotto, M. Schuldes, H. Weber, N. Wagener, C.
Neurohr, M. Bollmann, F. Körtke, J. Hiller, M. Hoss, J. Bock and L. Eckstein, "6-Layer Model
for a Structured Description and Categorization of Urban Traffic and Environment," IEEE
Access, vol. 9, pp. 59131 - 59147, 2021.

[83] B. Kaiser, B. Monajemi, D. Kusche and H. Schulte, "Systematic design and validation of
degradation cascades for safety-relevant systems," in The 2nd International Conference
on Engineering Sciences and Technologies, 2017.

[84] B. Frömel, "Fault Tolerance (lecture notes)," [Online]. Available: https://ti.tuwien.ac.at/
cps/teaching/courses/cpsesfvo/slides-ws14/04_ft.pdf#:~:text=A%20Fault%20Contain-
ment%20Uni t%20%28FCU%29%20is%20a%20set ,and%20is%20assume-
d%20to%20fail%20independently%20from%20other.

[85] D. Powell, "Failure Mode Assumptions and Assumption Coverage," in Predictably De-
pendable Computing Systems, Springer, 1995, pp. 123-140.

[86] F. Cristian, "Understanding Fault-Tolerant Distributed Systems," Communications of the
ACM, vol. 34, pp. 56-78, 1993.

[87] B. Littlewood and L. Strigini, "Validation of Ultrahigh Dependability for Software-Based
Systems," Comm. ACM, vol. 36, pp. 69-80, 1993.

[88] H. Kopetz, Simplicity is Complex - Foundations of Cyber-Physical System Design, Springer
Verlag, 2019.

[89] H. Kopetz, Real Time Systems - Design Principles for Distributed Embedded Applications,
Springer Verlag, 2012.

[90] H. Kopetz, "Emergence in Cyber-Physical System-of-Systems," in Cyber-Physical System-
of-Systems, Springer Verlag, 2016, pp. 73-96.

[91] A. Chou, J. Yang, B. Chelf, S. Hallem and D. Engler, "An Empirical Study of Operating Sys-
tem Errors," in Proceedings of the ACM SOPS 2001, 2001.

[92] Waymo, "Waymo Public Road Safety Performance Data," 2020.
[93] NHTSA, "Pre-Crash Scenario Typology for Crash Avoidance Research," 2007.
[94] American Psychological Association, "Multitasking Switching Cost," [Online]. Available:

https://www.apa.org/research/action/multitask. [Accessed 22 May 2006].
[95] Automotive Electronics Council, "AEC-Q100:Rev-H Failure Mechanism Based Stress Test

Qualification For Integrated Circuits," 2014.
[96] P. S. Shalev-Shwartz. [Online]. Available: https://www.youtube.com/watch?

v=ViGL0z1BULs. [Accessed 22 08 2022].
[97] P. Koopman, "Simplified Proposal for Vehicle Automation Modes," 31 January 2022. [On-

line]. Available: https://safeautonomy.blogspot.com/2022/01/simplified-proposal-for-
vehicle.html.

207www.the-autonomous.com

[98] California DMV, "Disengagement Reports," 2021. [Online]. Available: https://www.dmv.
ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-re-
ports/. [Accessed 14 07 2023].

[99] Wikipedia, "Wikipedia entry on Heisenbug," [Online]. Available: https://en.wikipedia.or-
g/wiki/Heisenbug. [Accessed 31 07 2023].

[100] S. Poledna, "Course: Dependable Computer Systems Part 5: Failure modes and models,"
2007. [Online]. Available: https://ti.tuwien.ac.at/cps/teaching/courses/dependable_
systems-ss08/dcs_slides/dcs-2007-p5.pdf. [Accessed 17 10 2023].

[101] N. Mohan, M. Törngren, V. Izosimov, V. Kaznov, P. Roos, J. Svahn, J. Gustavsson and D.
Nesic, "Challenges in architecting fully automated driving; with an emphasis on heavy
commercial vehicles," in Second International Workshop on Automotive Software Archi-
tectures (WASA), 2016.

[102] N. Mohan, P. Roos and J. Svahn, "System and Method for Controlling a Motor Vehicle to
Drive Autonomously". Sweden Patent SE541390C2, 10 09 2019.

[103] N. Mohan, P. Roos and J. Svahn, "System and Method for Controlling a Motor Vehicle to
Drive Autonomously". Germany Patent DE112018005794T5, 13 08 2020.

[104] N. Mohan, P. Roos and J. Svahn, "System and Method for Controlling a Motor Vehicle to
Drive Autonomously". Worldwide Patent WO2019125268A1, 27 06 2019.

[105] Wikipedia, "Wikipedia entry on Daruma doll," [Online]. Available: https://en.wikipedia.
org/wiki/Daruma_doll. [Accessed 24 07 2025].

[106] Y. Fu, J. Seemann, C. Hanselaar, T. Beurskens, A. Terechko, E. Silvas and W. P. M. H. Hee-
mels, "Characterization and Mitigation of Insufficiencies In Automated Driving Systems,"
in 27th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Yo-
kohama, Japan, 2023.

[107] F. Brooks, "No Silver Bullet - Essence and Accident in Software Engineering," in Procee-
dings of the IFIP Tenth World Computing Conference, 1986.

208 www.the-autonomous.com

LIST OF ABBREVIATIONS
Abbreviation Meaning

ACM Association for Computing Machinery

AD Automated / Autonomous Driving

ADI Automated Driving Intelligence

ADS Automated Driving System

AES Advanced Encryption Standard

AV Automated Vehicle

BIST Built-In Self-Test

CCDSS Computer-Controlled Driving Sub-System (in channel-wise DCF architecture)

CCF Common Cause Failure

CCI Common Cause Initiator

CEHSS Critical Event-Handling Sub-System (in channel-wise DCF architecture)

COTS Commercial Off-The-Shelf

CSM Controller Safety Mechanism (in DSM architecture)

DC Diagnostic Coverage

DCF Doer / Checker / Fallback

DDT Dynamic Driving Task

DFA Dependent Failure Analysis

DFI Dependent Failure Initiator

DSM Distributed Safety Mechanism

ECC Elliptic Curve Cryptography

ECU Electronic Control Unit

EOTI Emergency Operation Time Interval

FCU Fault-Containment Unit

FMEA Failure Mode and Effects Analysis

FSM Function Safety Monitor (in DSM architecture)

FTA Fault Tree Analysis

FTDSS Fault-Tolerant Decision Sub-System (in channel-wise DCF architecture)

FUN Function (in the DSM architecture)

HARA Hazard Analysis and Risk Assessment

HUD Heads-Up Display

HW Hardware

HWP Highway Pilot

IEC International Electrotechnical Commission

209www.the-autonomous.com

Abbreviation Meaning

IEEE Institute for Electrical and Electronics Engineers

IMU Inertial measurement Unit

ISO International Organization for Standardization

KPI Key Performance Indicator

LOC Lines of Code

MRC Minimal Risk Condition

MRM Minimal Risk Maneuver

MSS Monitoring Sub-System (in channel-wise DCF architecture)

MTTF Mean Time to Failure

NHTSA National Highway Traffic Safety Administration

NIST National Institute of Standards and Technology (US)

ODD Operational Design Domain

OEDR Object and Event Detection and Response

OEM Original Equipment Manufacturer

OS Operating System

PQC Post-Quantum Cryptography

RSA Rivest-Shamir-Adleman (cryptosystem)

SAE Society of Automotive Engineers

SaRA Safety-Related Availability

SEooC Safety Element out of Context

SEU Single-Event Upset

SoC System-on-Chip

SOTIF Safety of the Intended Functionality

SUV Sports Utility Vehicle

SW Software

TLS Transport Layer Security

UI User Interface

UNECE United Nations Economic Commission for Europe

VRU Vulnerable Road User

VSM Vehicle Safety Mechanism (in the DSM architecture)

V2X Vehicle-to-anything (vehicle, infrastructure)

WG Working Group

210 www.the-autonomous.com

APPENDICES
ODD OUTLINE OF REFERENCE AD USE CASE

FOLLOWED TAXONOMY

The HWP feature should only be active inside its defined Operational Design Domain (ODD),
which is given by a set of conditions regarding its environment. We follow BSI PAS 1883:2020
[80], which mostly covers the same attributes as the formalism (6 layers) of Project Pegasus [81]
[82]. The HWP feature should refuse to activate if these are not met and should, if these are no
longer met, prompt the driver to take back control within a convenient time span and in the
meantime ensure safety, e.g., by bringing the vehicle to a safe stop. The ability to execute an
MRM must be maintained even outside the ODD.

SCENERY

Zones

Attribute Sub-attribute (1) Sub-attribute (2) Capability

Zones

Geo-fenced areas Yes, as designated by OEM

Traffic management zones No

School zones No

Regions or states Yes, as designated by OEM

Interference zones
Dense foliage Yes (not close to driving path)

Tall buildings Yes

211www.the-autonomous.com

DRIVABLE AREA
Attribute Sub-attribute (1) Sub-attribute (2) Sub-attribute (3) Capability

Drivable
area

Drivable area
type

Motorways (high-
ways) Yes, maximum 130 km/h

Radial roads No

Distributor roads No

Minor roads No

Slip roads No

Parking No

Shared space No

Drivable area
geometry

Horizontal plane
Straight roads Yes

Curves Yes, maximum 1/100 m

Transverse plane
(cross-section)

Divided / undivi-
ded Divided

Pavement No

Barrier on the
edge

Types of lanes to-
gether

Longitudinal pla-
ne (vertical)

Up-slope Yes, maximum +4%

Down-slope Yes, maximum -4%

Level plane Yes

Lane specifica-
tion

Lane dimensions Minimum 3.5 m

Lane marking Yes, in good condition

Lane type

Bus lane
No (may be present, but
must not be used during nor-
mal operation)

Traffic lane Yes

Cycle lane No

Tram lane No

Emergency lane
No (may be present, but
must not be used during nor-
mal operation)

Other special
purpose lane Yes, carpool lanes

Number of lanes Yes, minimum 2 lanes per di-
rection

Direction of travel Right-hand traffic Yes

Left-hand traffic No

212 www.the-autonomous.com

Additional assumptions:

• Changed road markings or reduced lane width are not supported.

• The speed limit is appropriate for the curve radius and slope of the road such that the en-
tire stopping distance is visible without occlusions (in the absence of other vehicles).

Attribute Sub-attribute (1) Sub-attribute (2) Sub-attribute (3) Capability

Drivable
area

Drivable area
signs

Information
Variable Yes, full-time and temporary

Uniform Yes, full-time and temporary

Regulatory
Variable Yes, full-time and temporary

Uniform Yes, full-time and temporary

Warning
Variable Yes, full-time and temporary

Uniform Yes, full-time and temporary

Drivable area
edge

Line markers Yes

Shoulder (paved
or gravel) Yes

Shoulder (grass) Yes

Solid barriers Yes, obligatory on left side

Temporary line
markers No

None No

Drivable area
surface

Surface type

Asphalt Yes

Concrete Yes

Cobblestone No

Gravel No

Granite setts No

Surface features

Cracks Yes, minor only

Potholes No, not in significant density

Ruts or swells Yes, minor only

Damage caused
by weather Yes, minor only

Damage caused
by traffic Yes, minor only

Induced conditi-
ons

Icy No, not to a significant extent

Flooded No

Mirage Yes

Snow No

Standing water No

Wet Yes

Contaminated Yes, minor only

213www.the-autonomous.com

JUNCTIONS

ROAD STRUCTURES
Attribute Sub-attribute (1) Capability

Special structures

Automatic access control No

Bridges Yes

Pedestrian crossings No

Rail crossings No

Tunnels Yes, with separate driving directions

Toll plaza No

Fixed road struc-
tures

Buildings No

Streetlights Yes, but not required

Street furniture No

Vegetation No

Temporary road
structures

Construction site detours No

Refuse collection No

Road works No

Road signage No

Attribute Sub-attribute (1) Sub-attribute (2) Sub-attribute (3) Capability

Junctions

Roundabout No

Intersection

T-junction No

Staggered No

Y-junction On-ramp and
off-ramp No (except driving by)

Other No

Crossroads No

Grade-separated Interchange No

Other No

214 www.the-autonomous.com

ENVIRONMENTAL CONDITIONS

Additional assumptions:

• Not being warned of major road or traffic conditions is uncommon. We assume that the
road layout is known ahead of time and that unexpectedly encountering challenging road
or traffic conditions is uncommon as authorities oversee keeping the road in an accepta-
ble state of repair and/or informing traffic participants (via signs, map data, and/or V2X)
if this is not the case.

• HD maps are available for all supported highway segments.

Attribute Sub-attribute (1) Sub-attribute (2) Capability

Weather

Wind
Calm - fresh breeze (<10.7 m/s) Yes

Strong breeze (>10.7 m/s) - hurrica-
ne force No

Rainfall
Light rain (<2.5 mm/h) Yes

Moderate rain (>2.5 mm/h) -
cloudburst No

Snowfall
Light snow (>1 km visibility) Yes

Moderate snow (<1 km visibility) -
heavy snow No

Particulates

Marine No, not to significantly
reduced visibility

Mist and fog No, not to significantly
reduced visibility

Sand and dust No, not to significantly
reduced visibility

Smoke and pollution No, not to significantly
reduced visibility

Volcanic ash No, not to significantly
reduced visibility

Illumination

Day Yes

Night or low-
ambient

No, not to significantly
reduced illumination

Cloudiness Clear - overcast Yes

Artificial
illumination Yes

Connectivity

Communication

V2V, V2I Yes, at least intermittently

Cellular Yes, at least intermittently

Satellite No

DSRC and ITS-G5 No

Positioning

Galileo Yes, at least intermittently

GLONASS Yes, at least intermittently

GPS Yes, at least intermittently

215www.the-autonomous.com

DYNAMIC ELEMENTS

Additional assumptions:

• All human traffic participants are aware that the highway is a restricted environment and
act accordingly (responsibly).

Attribute Sub-attribute (1) Sub-attribute (2) Capability

Traffic

Density of agents
Dense traffic (including stop & go) Yes

Free-flow traffic (including no lead
vehicle) Yes

Volume of traffic

Flow rate

Agent type

Cars Yes

Buses and trucks Yes

Motorbikes Yes

VRUs (pedestrians, bicyclists) Yes, to a very limited
degree

Animals Yes, to a very limited
degree

Minor static obstacles (lost load,
debris, etc.) Yes

Major static obstacles (lost load,
trees, rocks, etc.)

Yes, to a very limited
degree

Special vehicles Yes

Subject ve-
hicle (ego
vehicle)

Behavior capabili-
ties

Ego vehicle speed 0-130 km/h

Lane change Yes

Lane merge Yes

Vehicle

All sensors and actuators in wor-
king condition Yes

Sensor or actuator non-operational No, except during MRM

Superficial body damage Yes

Moderate - major body damage No

Door or window open No

Low fuel or charge level No

Passengers

Driver not in driver seat No

Unbelted passenger No

Driver asleep or incapacitated No

216 www.the-autonomous.com

CLASSIFICATION OF TRAJECTORY CAPABILITY

Almost all conceptual system architectures discussed in this report have several subsystems ca-
pable of generating trajectories and controlling the vehicle. However, these subsystems can
have vastly different capabilities, i.e., the generated trajectories can differ significantly in how
well they avoid obstacles, ensure comfort, etc.

To judge whether using the outputs of a particular subsystem is acceptable in a certain scena-
rio of faults and/or functional insufficiencies (similar to the concept of a degradation cascade
[83]), we define six levels of trajectories. These are listed below (see also summary in Table 29)
in descending order of capability and used as reference in the evaluation of the availability of
the system (see section 2.3.1 and respective generic evaluations in section 4.2).

1. A nominal trajectory can only be generated by very complex subsystems. Such trajectories
dynamically react to traffic and also ensure comfort and efficiency. To plan these, input
from many different sensors and off-board information (e.g., HD maps, V2X, navigation
data) are needed. These are updated continuously, e.g., every 40-50 ms. If there are no
faults or functional insufficiencies in any subsystem, this is the expected output of the ADI.
Such output should be considered generally safe.

2. A degraded trajectory resembles a nominal trajectory but applies some restrictions. Ins-
tead of continuing the mission, such trajectories either reduce speed (e.g., from 130 km/h
to 90 km/h) or aim to come to a comfortable stop in a permanently safe location (e.g., at
a rest stop); they are updated continuously, e.g., every 40-50 ms. In high-speed AD use
cases, the ADI may only output degraded trajectories if there is a fault or functional insuf-
ficiency in at least one subsystem (also latent faults and/or sensor or actuator faults). If the
issue can be resolved, it is beneficial to restore nominal functionality. Such output should
be considered generally safe.

3. An MRM trajectory only aims to bring the vehicle to a controlled stop in an adequately
safe location66. To plan such trajectories, input from an adequate sensor set is needed. The
trajectories are updated continuously, e.g., every 40-50 ms. In high-speed AD use cases,
the ADI may only output MRM trajectories if there is a fault or functional insufficiency in at
least one subsystem. Once an MRM has been started, switching back to nominal or de-
graded mode is usually prevented. Such output should be considered generally safe.

4. A pre-planned MRM trajectory resembles an MRM trajectory but differs in planning hori-
zon and may restrict lane changes (e.g., only to the emergency lane). Most trajectories are
planned with a time horizon of at most a few seconds, but it may take dozens of seconds
to come to a complete standstill in high-speed use cases. Pre-planned trajectories keep
getting updated regularly and are buffered close to the actuators. In high-speed AD use
cases, the ADI may only resort to a pre-planned (buffered) MRM if there are independent,
simultaneous faults or functional insufficiencies in at least two subsystems. Such an MRM is
executed without further dynamic updates (“blindly”), i.e., it cannot react dynamically to
traffic anymore once the generating subsystem is lost. Such output should be considered
potentially unsafe.

5. A blind braking trajectory is a basic residual reaction. It only aims to maintain the current
curvature (or ideally the current lane) and apply a constant deceleration. To “plan” such
trajectories, no sensor data or significant processing power is needed. In high-speed AD
use cases, the AD system may only resort to blind braking if there are independent, simul-
taneous faults or functional insufficiencies in at least two subsystems. Such output should

66 This depends on the considered AD use case. For a Valet Parking feature, it may be acceptable for stop anywhere. For a Highway Pilot feature, it
may only be acceptable to pull over to the emergency (or right-most) lane; stopping in the current lane may only be acceptable under very rare
circumstances.

217www.the-autonomous.com

be considered probably unsafe.

6. No output or a faulty trajectory represent the worst case (i.e., the acceptable residual risk).
In high-speed AD use cases, the ADI may only remain silent or output faulty trajectories if
there are independent, simultaneous faults or functional insufficiencies in at least two sub-
systems. Such output should be considered generally unsafe.

Table 29: Levels of trajectories in descending order of capability.

For the evaluation, we use the following scheme:

• In the nominal case, i.e., without faults or functional insufficiencies, the AD system needs to
execute a nominal trajectory (1). Lower capabilities (2-5) can be problematic, though not
necessarily unsafe.

• In cases with a single fault or functional insufficiency, i.e., affecting a single FCU, the AD
system needs to execute an MRM that is dynamically adapted to the traffic situation in real
time (3). Of course, higher capability is “nice to have” (1-2). Lower capabilities (4-5) can
be problematic, though not necessarily unsafe.

• In cases with two independent faults or functional insufficiencies, i.e., affecting two FCUs
simultaneously, any remaining capability is acceptable (1-5).

Trajectory Needed sensors Dynamics and
implied safety

Comfort, efficiency,
and utility

Nominal Yes (many) High High

Degraded Yes (many) High Medium-High

MRM Yes (few) High Medium

Pre-planned MRM

Yes (before
execution starts)
No (after
execution starts)

Medium Medium

Blind braking No Low Low

None / faulty No None None

218 www.the-autonomous.com

SAMPLE ANALYSIS POINTS REGARDING DIFFERENT
CONCEPTUAL ARCHITECTURE PATTERNS
This appendix provides additional details on the design principle D7: Mitigation of common
cause hazards, section 1.5.2.

The dimensions introduced in Figure 6 can be exemplified by conceptually applying them to a
selection of architecture patterns. Functional complexity is indicated by the depth of the slice,
while the implemented capabilities’ coverage of an operational domain is indicated by the sur-
face area. Holes are therefore representative of an absence of capability.

Figure 64: Channel dimensioning as per conceptual pattern of selected architecture candidates

Given the selected architecture patterns in Figure 64, the following relative observations can
be made:

• Single-Channel architectures can be expected to have significantly complex implementati-
ons to meet the functional requirements of advanced use cases.

▪ Errors and output insufficiency within the implementation is not complemented or
offset by the capability of another channel; a fallback capability is not available.

• Triple Modular Redundancy (TMR) architectures typically offer redundancy of the same
functionality, hence the equal depth of each slice and diverse location of errors to prevent
unavailability of the function.

▪ Nevertheless, the redundant functions may all contain the same output insufficiencies
and therefore offer no prevention of common cause functional insufficiency hazards.

▪ Even the diverse implementation of the functionality aiming to achieve non-common
cause output insufficiencies could struggle with inexact agreement when handling
the individual channel outputs.

▪ A fallback capability beyond the nominal functionality within the intended ODD is not
available, as indicated by the equal areas of each slice.

• Doer / Checker / Fallback architectures typically propose the diverse implementation of a
complex performance channel and its complementary checker channel, hence the un-
equal depth of the slices and diverse location of holes.

▪ A fallback capability beyond the nominal functionality is offered by a basic channel
capable of offering minimum-risk-maneuver in conditions beyond the ODD; the area
of which could be considered analogous to something like the Target Operational
Domain (TOD).

220 www.the-autonomous.com

	Authors
	Reviewers
	Contents
	Version History
	Key Updates of the Second Edition
	Report Summary
	Abstraction level and reference use case
	System requirements, design constraints and design principles
	Candidate Architectures
	Implementation Considerations and Sufficient Independence
	Architecture Design and Standards Compliance
	Introduction and purpose
	The Autonomous
	Working Group Safety & Architecture and its Scope
	Purpose and structure of this document
	1 Background and premises
	1.1 Reference AD use case
	1.2 System boundary
	1.3 System safety requirements
	1.4 Abstraction level
	1.5 General constraints and design principles
	2 Architecture evaluation criteria
	2.1 Architectural decisions and processes
	2.2 General requirements
	2.3 Availability
	2.4 Nominal Functionality
	2.5 Cybersecurity
	2.6 Scalability
	2.7 Simplicity
	2.8 Safety of the intended functionality (SOTIF)
	2.9 Table of evaluation criteria
	3 Candidate architectures
	3.1 Collection process
	3.2 Overview of architectural design patterns
	3.3.1 Single-channel architecture 2
	3.3 Monolithic architectures
	3.4 Symmetric architectures
	3.5 Asymmetric architectures
	3.6 Related examples from the industry
	4 Architecture evaluation
	4.1 Evaluation process
	4.2 Generic evaluation
	4.2.5 Evaluation of the DSM architecture 2
	4.3 Specific evaluation in the context of the reference AD use case 2
	4.3 Specific evaluation in the context of the reference AD use case 2 2
	4.3 Specific evaluation in the context of the reference AD use case 3
	4.3 Specific evaluation in the context of the reference AD use case
	5 Implementation considerations
	5.1 HW considerations
	5.2 SW considerations
	5.2.8 Tool Qualification 2
	5.3 Standards for Development of Safe AD Systems
	5.4 Sufficient Independence
	Outlook
	Terminology
	Terminology from standards and literature
	References
	List of abbreviations
	Appendices
	ODD outline of reference AD use case
	Classification of Trajectory Capability
	Sample analysis points regarding different conceptual architecture patterns

