
1www.the-autonomous.com

Safe Automated Driving:
Requirements and
Architectures
Full Report

2 www.the-autonomous.com

3www.the-autonomous.com

AUTHORS

REVIEWERS

Gabi Escuela
gabi.escuela@baselabs.de

Bernhard Kaiser

Andrei Terechko

Udo Dannebaum
udo.dannebaum@infineon.com

Jens Rosenbusch
jens.rosenbusch@infineon.com

Nahla Ben Mosbeh

Chaitanya Shinde

Ayhan Mehmed

Christoph Schulze

Shailesh More

Lucas Fryzek

Matthew Storr

The Working Group Safety & Architecture would like to thank the reviewers
of the report for their valuable input and feedback.

Neil Stroud
neil.stroud@coreavi.com

Philip Koopman

Jan Toennemann

Martin Törngren
martint@kth.se

Kazuhito Takenaka
k.takenaka@eu.denso.com

Justin-Kiyoshi Tiele
j.tiele@eu.denso.com

Jan Reich

Rasmus Adler

Georg Niedrist
georg.niedrist@tttech-auto.com

Moritz Antlanger
moritz.antlanger@tttech-auto.com

Christian Mangold
christian.mangold@tttech-auto.com

Friedrich Reisenberger
friedrich.reisenberger@tttech-auto.com

4 www.the-autonomous.com

CONTENTS
Authors ... 3

Reviewers .. 3

Contents .. 4

Version History ... 6

Executive Summary .. 7
Abstraction level and reference use case ... 7
System requirements, design constraints and design principles9
Candidate Architectures ..10
Architecture Evaluation Methodology, Criteria, and Findings13
Implementation Considerations ...15

Introduction and purpose ... 16
The Autonomous ..16
Working Group Safety & Architecture ...16
Purpose and structure of this document ...18

1 Background and premises .. 21
1.1 Reference AD use case ... 22
1.2 System boundary ...28
1.3 System requirements ...31
1.4 Abstraction level .. 32
1.5 General constraints and design principles 33

2 Architecture evaluation criteria ... 43
2.1 Architectural decisions and processes ... 43
2.2 General requirements ...46
2.3 Availability .. 49
2.4 Reliability ...51
2.5 Cybersecurity .. 52
2.6 Scalability ... 53
2.7 Simplicity ...55
2.8 Safety of the intended functionality (SOTIF) 57
2.9 Table of evaluation criteria ...59

5www.the-autonomous.com

3 Candidate architectures ..62
3.1 Collection process .. 63
3.2 Overview of architectural design patterns 63
3.3 Monolithic architectures .. 67
3.4 Symmetric architectures ... 70
3.5 Asymmetric architectures ... 73

4 Architecture evaluation .. 88
4.1 Evaluation process ...88
4.2 Generic evaluation ...89
4.3 Specific evaluation in the context of the reference AD use case ..108

5 Implementation considerations ..118
5.1 HW mapping considerations .. 118
5.2 SW mapping considerations ...121
5.3 Safety argumentation ... 126

Outlook .. 135

Terminology .. 136
Terminology from standards and literature136
Terminology specific to candidate conceptual architectures140

References ... 141

List of abbreviations ... 146

Appendices ... 148
Appendix A: ODD outline of reference AD use case148
Appendix B: Detailed description of the channel-wise DCF
architecture ..154
Appendix C: Sample analysis points regarding different
conceptual architecture patterns ...159

6 www.the-autonomous.com

VERSION HISTORY
Version Date Revision description

1.0 01.12.2023 Initial release

7www.the-autonomous.com

EXECUTIVE SUMMARY
The Autonomous is an initiative and open platform bringing together
leading executives and experts of the mobility ecosystem to align on
subjects relevant to the safety of autonomous driving (AD); in its Safety &
Architecture Working Group, members of international research institutes
and industrial companies came together to investigate what the system-
level conceptual architecture of an automated vehicle could look like, in
order to address the functional and safety challenges of automated
driving.

This report was compiled from June 2021 to December 2023 in three major
report increments that were accompanied by external reviewers from
industry and academic experts.
Our work is structured as follows: we start by outlining the reference use
case of an SAE L4 Highway Pilot, derive key system requirements, and
establish general constraints and established design principles for
implementing such a use case in an AD system. We continue with
candidate architectures from market and literature research and derive
their properties. Finally, we compare the architectures with respect to a
set of criteria that we consider crucial (such as system availability,
robustness, and scalability) and conclude with development
considerations and implementation hints.

The intended readers are system owners who make architectural
decisions and ensure consistency on many different abstraction levels,
from high-level conceptual architectures to low-level physical
implementations. Our intention is to support them in making such
decisions and building up a safety argumentation.

ABSTRACTION LEVEL AND REFERENCE USE
CASE

It is commonly understood and accepted that the development of a safe
automated driving system for complex driving tasks is a big challenge.
Even when developed to the highest standards, complex HW and SW
elements will exhibit faults that can materialize in an arbitrary way. Still,
the overall autonomous driving system needs to tolerate such faults and
keep up operation at least for a minimum time frame – i.e., it needs to be
fail-degraded. A well-chosen architecture is indispensable to manage the

8 www.the-autonomous.com

complexity of autonomous driving systems and to ensure fault tolerance in
an effective and efficient way.

For our analysis, we have chosen what we call the conceptual system
architecture level: we consider the system as a set of well-encapsulated
subsystems that can comprise up to an entire processing channel, or at
least a dedicated subset of the overall functionality.

As our reference use case, we chose an SAE Level 4 Highway Pilot to act
as a backdrop for compiling assumptions and deriving system
requirements and design principles applicable to conceptual system
architectures. Such a feature, which is expected within the next few years,
will need to deal with complex traffic situations and will necessitate non-
trivial system architectures due to high availability requirements and
complexity.

SAE Level 4 130
km/h

9www.the-autonomous.com

SYSTEM REQUIREMENTS, DESIGN
CONSTRAINTS AND DESIGN PRINCIPLES

The Safety & Architecture Working Group focuses on a system providing
AD functionality, which we call the Automated Driving Intelligence (ADI).
This system covers all cognitive tasks previously performed by the driver. A
simplified representation is shown below, illustrating the four other
systems the ADI is connected to, as well as the elements that „close the
loop“ with the physical environment.

A set of key system requirements (summarized in the table below) should
be applied to the ADI to ensure the safety of commands to the actuators.
Besides the expected timeliness, correctness, and consistency of
commands, their availability is highly safety-relevant for an SAE L4
function. Additionally, an ADI architecture shall foresee self-diagnostic
mechanisms and shall support detecting and handling functional
insufficiencies (including, but not limited to the perception functions).

Physical environment

D
riv

er
 &

 p
a

ss
en

g
er

s

Ex
te

rn
a

l s
ys

te
m

s
&

cl
ou

d

AD
Intelligence

Sensor
System

Actuator
System

UI
System

Diagnostics
System

Vehicle

S1 ADI output timeliness

S2 ADI output availability

S3 ADI output correctness

S4 ADI output consistency

S5 Perception malfunction detection

S6 ADI diagnostics

10 www.the-autonomous.com

When coming up with conceptual system architectures intended to satisfy
these system requirements, technological limitations constrain how high-
reliability systems can be designed, built, and tested using realistic HW
and SW components. Such general constraints need to be addressed by
an architecture for automated driving, e.g.: it is impossible to avoid
design faults and single-event upsets in large and complex monolithic
systems, and it is impossible to achieve high availability by testing or to
specify all edges cases that an AD function must cope with.

In addition, well-established practices should be respected in a sound
conceptual system architecture. We identify a number of such design
principles, e.g., using well-encapsulated independent subsystems (“Fault
Containment Units”, FCUs), applying diversity and redundancy,
preventing emergent behavior by limiting interactions between
subsystems, and mitigating hazards by adopting the Swiss cheese model.

CANDIDATE ARCHITECTURES

From industry publications, academic papers, and patent publications
we have identified candidate architectures and grouped them into three
basic categories of conceptual system architectures:

1. MONOLITHIC ARCHITECTURES
present the status quo for SAE L2 systems
and are a natural basis for incremental
development to L3 systems.

2. SYMMETRIC ARCHITECTURES
rely on multiple channels providing the same
or similar functions, often with some voting
mechanism for arbitration.

3. ASYMMETRIC ARCHITECTURES
employ asymmetric decompositions to redu-
ce the complexity of some subsystems, e.g.,
via Doer / Checker or Active / Hot Stand-By
patterns.

11www.the-autonomous.com

These architectures employ several underlying patterns:

• The Arbitration pattern manages redundancy by deciding (e.g., vo-
ting) between equal channels. The Agreement pattern is similar, but
without an external arbiter.

• The Doer / Checker pattern asymmetrically decomposes (for correct-
ness) a channel into a Doer performing the intended function and a
Checker approving it.

• The Active / Hot Stand-By pattern asymmetrically decomposes (for
availability) into a preferred Main channel and – if that is not availa-
ble – a Fallback channel.

A representative of the monolithic architectures is the Single-Channel
architecture, where a single ECU performs all tasks of the Automated
Driving function, i.e., processes the sensor data into a consistent
environment model, generates trajectories and, finally, set points for the
actuators. Examples of this architecture are the AUDI zFAS System for an
SAE L3 Traffic Jam Pilot (2017) or, more recently, Tesla’s “Full Self Driving”

Arbiter (Decider)

Checker

Doer
output

yes/no

Subsystem 2 Arbiter (Voter)

...

Subsystem 1
output

output

Arbiter (Switch)

Hot Stand-By

Active
output

output

12 www.the-autonomous.com

(FSD), as far as can be judged from available documentation, or
monolithic end-to-end AI systems. At least for the zFAS, availability
requirements are relaxed compared to an L4 Highway Pilot, and the
system does not need to provide complex fallback functionality in case of
a fault – hence it can be backed up by a different ECU outside the AD
system.

The Majority Voting architecture as a representative of the symmetric
architectures implements a number of channels (three or more), each of
which can perform the full nominal function. The voter compares (exactly
or inexactly) the channels’ results and forwards the majority opinion to the
actuators. If all three results differ, no decision can be made. To achieve
fault tolerance, multiple instances of the voter may be necessary.

The first of the considered asymmetric architectures is the Channel-Wise
Doer/Checker/Fallback architecture, where a Doer performs the
nominal driving function and can resemble an SAE L2 system, while a
Fallback performs only Minimal Risk Maneuvers. A Checker validates both
the Doer’s and the Fallback’s output. A Selector receives the Checker’s
verdict and forwards either the trajectory from the Doer or from the
Fallback to the actuators.
Doer/Checker/Fallback are complex subsystems, and each of them forms
an FCU that can fail arbitrarily and independently. They are implemented
in a diverse way to minimize common-cause failures, to ensure sufficient
independence. The Selector is simple, has low performance
requirements, and can be fully verified to preclude systematic faults. To
achieve fault tolerance, it consists of two identical instances.

Another asymmetric architecture is the Layer-Wise Doer/Checker/
Fallback, essentially a multi-channel approach with at least one primary
and one safing channel, which provides a degraded mode of operation
in case the primary channel fails. Each channel consists of Doer/Checker
pairs, arranged in multiple layers of the Sense-Plan-Act model. A Priority
Selector determines the output to be sent to the actuators, depending on
the states of the channels.
The Priority Selector is a high safety integrity component, simpler than the
Checkers. It must continue to operate in the presence of failures to deliver
either the primary or the safing output, or to trigger an emergency stop. It
may fail silently so long as that failure triggers an emergency (blind) stop.

As a final asymmetric example, we study the Distributed Safety
Mechanism architecture, which can be seen as a more complex,

13www.the-autonomous.com

distributed variant of the Doer/Checker/Fallback approach. The
architecture is composed of three channels, each of them containing
safety monitors – a Nominal Channel, consisting of the function itself and
controlled by a Function Monitor, an Emergency Channel, which is
controlled by a Controller Safety Mechanism, and a Safety Channel,
which is controlled by a Vehicle Safety Mechanism. The Function Monitor
is checking for SOTIF issues, the Controller Safety Mechanism is
responsible for monitoring all the function controllers (including hardware
and software platforms) and the Vehicle Safety Mechanism.
The Vehicle Safety Mechanism is responsible for monitoring the
communication networks and the Controller Safety Mechanism. It can
send control commands to the vehicle actuators in case of comfort or safe
stop, by using independent sensor data.

ARCHITECTURE EVALUATION METHODOLOGY,
CRITERIA, AND FINDINGS

We evaluate the presented architectures with respect to several key
criteria:

• Availability: to what extent would the architecture support the fail-
operational property, i.e., enable safe operation even in the case of
unavoidable electronic or software faults?

• Reliability: would continuity of the nominal functionality be well
supported, to help ensure a positive user experience, e.g., by
avoiding function degradation?

• Cybersecurity: would the architecture be susceptible to security
threats, or would it support resilience measures against attacks?

Reliability

Availability of the nominal
functionality

Availability

Availability of the system

Degradation Scheme

Diagnostics Scheme

Cybersecurity

Interactions between
subsystems

Interactions with
external systems

14 www.the-autonomous.com

• Scalability: to what extent would cost-efficient downscaling to lower
SAE levels (for vehicle options), or upscaling to higher SAE levels (for
future enhancements), be supported?

• Simplicity: would the architecture be conceptually simple, to support
modular development, verification, and validation?

• Safety of the Intended Functionality: would the architecture help
ensure robustness and safe operation in the presence of functional
insufficiencies and unavoidable edge cases?

For the evaluation itself, we proceed in three steps: To form an unbiased
basis for the evaluation, we start with a generic evaluation of each
architecture, by listing observations (properties of each architecture) related
to each criterion. Next, we evaluate the relative significance of the above
criteria for the selected use case of an SAE L4 Highway Pilot. Finally, we
directly compare the architectures, considering the observed properties from
the generic evaluation and inferring merits or weaknesses with respect to
each evaluation criterion, and qualitatively ranking them under that criterion.

As a result, it turns out that the asymmetric architectures are generally
preferable to symmetric ones. By virtue of their inherent diversity of
computational streams, they exhibit more robustness with respect to
availability, cybersecurity, and SOTIF because the channels complement
each other and tend to mutually compensate their potential weaknesses.
The asymmetric architectures also offer more options with respect to
scalability, as omitting channels quite naturally leads to lower SAE level
functionality, and higher levels can be reached by adding channels.
Superficially, they might appear more complex and less reliable (in the
sense of keeping the intended functionality) than symmetric architectures.
However, their diversity actually facilitates modular development and
independent verification of the channels, which in turn is expected to lead
to lower development costs and enhanced availability.

Simplicity

Number, complexity and
performance of subsystems

Required diversity

Complexity of validation

SOTIF

Support to accommodate
functional insufficiencies

Support to manage
operational conditions

Scalability

Scalability towards higher
availability

Scalability towards
different offering levels

15www.the-autonomous.com

The symmetric architectures, such as voting approaches, are seen as
highly susceptible to common cause deficiencies that might impact all
channels at the same time – be it from the functional safety, SOTIF, or even
the cybersecurity perspective. If this problem is addressed by
heterogeneous channel implementations (e.g., different chipsets), then
the feasibility of voting is questionable since channels might come to
different but equally valid solutions. Finally, the monolithic single-channel
architecture is not seen as a feasible solution: it does not fulfill any of the
criteria without additional internal redundancy and supervision
mechanisms that are introduced during implementation. This would make
it evolve into one of the other architectures.

IMPLEMENTATION CONSIDERATIONS

For further refinement of the conceptual system architecture into
combined hardware/software solutions with redundant channels, we
need to consider dependent failures of the elements. In other words,
sufficient independence of the channels (which includes freedom from
interference), and the absence of single points of failure need to be
ensured. We discuss dependent failure initiators and provide hints on how
to overcome them.

Similarly, we consider selected topics related to the further refinement of
the conceptual system architecture into a software safety concept. This
includes a discussion on different software architectural styles –
depending on the use case – as well as common safety measures.
To achieve a sound safety argumentation for the chosen architectures, we
refer to the relevant safety standards, in particular ISO 26262 and ISO
21448. In addition, we propose advanced methods like formal verification
on the architecture level and for the logical-to-physical mapping, as well
as Markov modeling to quantify the overall system availability, to meet an
ASIL D target.

16 www.the-autonomous.com

INTRODUCTION AND
PURPOSE
THE AUTONOMOUS

The Autonomous is the global community shaping the future of safe
autonomous mobility. Initiated by TTTech Auto in 2019, The Autonomous is
an open platform building an ecosystem of all actors involved in the
development of safe autonomous mobility. Ecosystem partners range from
car manufacturers, technology suppliers and regulatory authorities to
disruptors, thought leaders, academia, and government institutions.
The goal of The Autonomous is to generate new knowledge and
technological solutions in the field of autonomous mobility, thus
accelerating the transition to market readiness and series development of
safe self-driving vehicles. To achieve this, The Autonomous has put in
place two strategic streams:

1. Event Stream – facilitates discussions and networking for leading
executives and experts from the autonomous mobility ecosystem.

2. Innovation Stream – facilitates cooperation across the industry to work
on global reference solutions for safety challenges. These reference
solutions conform to relevant standards and will facilitate the
adoption of safe autonomous mobility on a global scale. As part of
the Innovation Stream, The Autonomous launches and facilitates
Working Groups and Expert Circles in order to develop pre-
competitive concepts, concrete technical solutions, best practices,
and recommendations in key areas of autonomous driving – from E/E
architectures and artificial intelligence to regulatory frameworks and
societal acceptance.

The findings of The Autonomous Working Groups are presented yearly at
The Autonomous Main Event.

WORKING GROUP SAFETY & ARCHITECTURE

The first initiated Working Group of the Innovation Stream of The
Autonomous is the one on “Safety and Architecture”: International
research institutes and industry leaders come together to address the
fundamental question of what the conceptual system architecture of an

17www.the-autonomous.com

automated vehicle (SAE level 4 and higher) should look like, i.e., how the
system’s partitioning into computational streams, for instance for safety
and redundancy purposes, could be performed (for further explanations,
see section 1.4). The present report produced by the Working Group
“Safety & Architecture” addresses this topic.

It is commonly understood and accepted that the development and
implementation of a failure-free automated driving system for complex
driving tasks is an extremely tough challenge. Even having been
developed to the highest standards, complex HW and SW elements can
exhibit malfunctions that can materialize in an arbitrary way. Still, the
overall autonomous driving system needs to tolerate these and keep up
operation at least for a defined time frame – i.e., needs to be fail-
operational or at least fail-degraded. Regarding faults, this study
generally concerns how to achieve a dependable computational system
architecture and is thus not limited to faults like the ones caused by a lack
of functional safety or to malfunctions due to a lack of “safety of the
intended functionality”. A good summary of dependability aspects that
need be considered can be found in [1].

The chosen level of conceptual representation is on the one hand
sufficiently specific to be useful as a reference and on the other hand
sufficiently generic to allow for different implementations. More details on
this conceptual representation will be given in section 1.4 - Abstraction
level. This report focuses on the computational unit between the sensors
and actuators which will be called “Automated Driving Intelligence” [55]1

(ADI), see Figure 1. This includes sensory processing, fusion, trajectory
finding and decision making, but excludes raw data sensors and the
actuators. Detailed hardware and software architectures are topics for
potential follow-up activities of the Working Group after this report.

Figure 1: Automated Driving Intelligence (ADI)

Act

Sense

Th
in

k
=

A
ut

om
a

te
d

 D
riv

in
g

In

te
lli

g
en

ce

1 We use this term [55] instead of the more generic “AD System” to indicate that it excludes other systems
such as raw data sensors or actuators.

18 www.the-autonomous.com

PURPOSE AND STRUCTURE OF THIS
DOCUMENT

Architecture and design occur on multiple different abstraction levels (see
Figure 2). It lies within the responsibility of “system owners”, whom we
consider the intended readers of this document, to ensure a consistent
design across all such levels. System owners (see also section 2.1.1 - System
owner persona) may work for OEMs, mobility companies, or their
suppliers and need to make architectural decisions both on a high,
abstract level and on a lower, implementation level (see also section 2.1.2
- Architecture design process and decisions).

Figure 2: Ensuring consistency between architectures on different abstraction levels.

This document is intended to support system owners in making high-level
architectural decisions and mapping these to low-level implementations.
It aims to provide a structured analysis of high-level architectures in the
Automated Driving (AD) context, as well as supportive arguments for
demonstrating that crucial requirements are satisfied and important KPIs
are well met.

Conceptual arch.

HW arch. SW arch.

19www.the-autonomous.com

This document is structured as follows (see also Figure 3):

• In section 1 - Background and premises, we define the context in
which we look at high-level system architectures.

▪ We start by outlining a reference AD feature that captures the
challenges regarding safety and availability. For this, we chose
an assumed version of an SAE L4 Highway Pilot feature (see
section 1.1).

▪ The reference AD feature is assumed to be provided by an AD
system. The system boundary of this “AD Intelligence” is
described in section 1.2.

▪ Based on these, we then derive high-level system requirements
for the “AD Intelligence”, with a focus on safety and availability
(see section 1.3).

▪ The architectural abstraction level that we consider is
described in detail in section 1.4.

▪ Finally, we also collect general constraints and design
principles relevant to system architectures within our chosen
context and on our chosen abstraction level (see section 1.5).

• In section 2 - Architecture evaluation criteria, we define evaluation
criteria relevant to high-level system architectures.

▪ In order to choose evaluation criteria relevant to our intended
readers, we start by describing the architectural choices they
may need to make (see section 2.1).

▪ Many attributes of a well-made AD system do not directly
depend on the high-level architecture. We thus summarize
these attributes and assume that they are covered (see section
2.2).

▪ Attributes that are more closely linked to the choice of high-
level system architecture are collected in sections 2.3 to 2.8 and
summarized in tabular form in section 2.9. Each of these
attributes is broken down into multiple evaluation criteria (and
associated key questions) that we later apply in the architecture
evaluation.

• In section 3 - Candidate architectures, we collect and describe
different high-level system architectures.

▪ We start by describing the process we used to collect
candidate high-level system architectures (see section 3.1).

▪ Since some of these share certain basic principles, we chose to
extract these and describe their intention and mechanism in a

20 www.the-autonomous.com

generic way (see section 3.2).
▪ The six candidate conceptual system architectures are

clustered in three major groups and described in a comparable
way in sections 3.3, 3.4, and 3.5.

• In section 4 - Architecture evaluation, we evaluate the collected
conceptual system architecture candidates.

▪ Our evaluation methodology is described in section 4.1.
▪ We use the evaluation criteria defined earlier to make a series

of general observations on each candidate architecture (see
section 4.2). These are not specific to an AD use case.

▪ This is then followed up by considering these observations in
the context of our reference AD use case (see section 4.3).

• In section 5 - Implementation considerations, we provide
considerations for mapping conceptual system architectures to
specific HW and SW architectures.

▪ Considerations for mapping a conceptual system architecture
to a physical HW architecture are collected in section 5.1.

▪ Considerations for mapping a conceptual system architecture
to a physical SW architecture are collected in section 5.2.

▪ Finally, the process for constructing a safety argumentation is
outlined in section 5.3.

Figure 3: Structure of this document.

21www.the-autonomous.com

1 BACKGROUND AND
PREMISES
The requirements, general constraints, and design principles as introdu-
ced here relate to a system of interest, referred to as the ADI (recall Figure
1), and more specifically, to the computational system architecture of the
ADI. Ensuring the safety of automated driving requires a system safety
perspective that takes the AD intelligence, the vehicle platform, the beha-
vior of surrounding actors as well as the traffic environment into account,
including the full set of responsibilities previously assumed by the driver.
The work described in this report does not take on this entire grand chal-
lenge, but rather focuses on architectural aspects of the AD Intelligence
and their contributions to safety.

With the overall goal to propose and evaluate architectures for AD sys-
tems, a main emphasis is placed on meeting appropriate functional safe-
ty requirements, with considerations of system and software complexity,
and hardware reliability (referring to ISO 26262 [2]). With the introduction
of advanced external perception and machine learning, additional safety
hazards must be addressed for automated driving, as traditionally, func-
tional safety standards have assumed that “requirements are known” and
“nominal operation” with no software or electronics failures, is safe. This
has led to new standards, such as ISO 21448 “Safety of Intended Functio-
nality” (SOTIF) [3], which attempts to address these challenges. SOTIF is
part of the considerations for this work regarding causes of failures and
qualitative aspects of diversity (further elaborated in section 1.5.1 - Gene-
ral).

For highly Automated Vehicles (AVs), the increasing complexity and risks
of failures lead to open issues, including what constitutes safe road beha-
vior and what measures are needed to assure a “positive risk balance” [4]
such that an AV would at least perform better than an average driver.
These are topics being treated in ongoing standardization work, such as
ISO/AWI TS 5083—safety of automated driving systems. A positive risk ba-
lance is considered for the architectural work in terms of, for example, re-
liability goals. Behavioral aspects such as tactical safety [5] are beyond
the scope of this work.

Cybersecurity will also be key for automated vehicles and their relation to
safety, as manifested by the new standards like ISO/SAE 21434:2021 [6] for

22 www.the-autonomous.com

automotive. Cybersecurity aspects are, however, not covered extensively
in this release, partly due to the chosen abstraction level. Some aspects of
cybersecurity that have an indirect impact on security considerations will
be covered through a few evaluation criteria, see further section 2.5 - Cy-
bersecurity.

1.1 REFERENCE AD USE CASE
1.1.1 MOTIVATION

This section outlines the reference AD use case targeted by the "Safety &
Architecture" Working Group of The Autonomous. This may later be sup-
plemented by additional AD use cases in the second iteration of the Wor-
king Group (see Outlook).

This reference AD use case shall serve the following purposes:

• As an input for defining reasonable assumed requirements (see sec-
tion 1.3 - System requirements). In ISO 26262, safety-related require-
ments are ultimately derived from item-specific safety goals, e.g.,
that the system shall avoid collisions and loss of vehicle control.

• As an input for establishing what level of algorithmic complexity is
required to perceive varied environments and handle different and
dynamic traffic scenarios.

• As an input for defining general assumptions (see section 1.5 - Gene-
ral constraints and design principles).

• As an input for defining and quantifying dependability goals.

This reference AD use case may help with the following purposes:

• To derive a rough estimate of what computational resources are re-
quired.

• To derive a rough estimate of currently achievable failure rates for
the computational resources as well as the estimated rate of hazar-
dous behavior of the intended functionality² from software (applica-
tion and infrastructure code).

• To refine requirements that are related to vehicle-level use cases
and scenarios into more detailed requirements on the algorithm le-
vel, e.g., perception, activation / deactivation, degradation, or war-
nings³.

Note: This reference AD use case is intended to give the reader a general

23www.the-autonomous.com

understanding of what such a feature could look like. While some of these
descriptions have direct relevance for architectural considerations later
on (marked in bold font in the following reference AD use case sub-secti-
ons), many others merely serve as a background to outline the many dif-
ferent aspects and perspectives involved.

1.1.2 CHOICE OF REFERENCE AD USE CASE

At the moment, various OEMs are discussing a number of different AD use
cases, each having different architectural implications. We have scree-
ned these on a high level according to several criteria to identify a suita-
ble reference AD use case:

• Timeline
The reference AD use case should (likely) become technically and
commercially feasible within the next 5-10 years.

• Complexity of the Operational Design Domain (ODD)
The reference AD use case should apply to an ODD of at least medi-
um complexity. This implies that complex algorithms and high-perfor-
mance hardware are necessary.

• System availability
The reference AD use case should have high integrity and availabili-
ty requirements, i.e., require resilience against faults (fail-operatio-
nal/fail-degraded). This implies that a non-trivial conceptual system
architecture is necessary to compensate for the weaknesses of
complex algorithms and powerful hardware.

TABLE 1: LIST OF AD USE CASES UNDER DISCUSSION (NOT COMPREHENSIVE).

² Malfunctioning behavior can arise due to faults (e.g., bugs), due to functional insufficiencies (e.g.,
environmental aspects neglected in the specifications), due to operational disturbances (e.g.,
environmental conditions), or due to misuse. In systems involving machine learning, this may also be
caused by bad or biased training data. There are some empirical estimates for the number of
undiscovered bugs per line of code remaining despite using proper development processes [10].
³ This may also include performance-related aspects such as timing, accuracy, and detection reliability.

AD use case Timeline ODD complexity System availability

Traffic Jam Pilot ●●●●● ●●○○○ ●●●○○

Highway Pilot ●●●●○ ●●●○○ ●●●●●

Mobility as a Service (MaaS) ●●●○○ ●●●●● ●●●○○

Valet Parking ●●●●○ ●●○○○ ●●○○○

Low-speed AD (shuttle) ●●●●○ ●●○○○ ●●○○○

24 www.the-autonomous.com

The AD use case we consider the most
suitable (see Table 1) is an SAE Level 4
Highway Pilot (HWP) feature. This functi-
on is expected to be introduced between
2025 and 2028.

We explicitly target the “High Automati-
on” level / “SAE L4” (according to the clas-
sification scheme proposed by the Society
of Automotive Engineers [7]⁴) over SAE L3

(see also [8, 9]). This entails the following:

• The system assumes full responsibility for the Dynamic Driving Task
(DDT) in all dimensions, i.e., the driver can be „hands-off“.

• The system assumes full responsibility for its own supervision, i.e., the
driver can be „eyes-off“ and „brain-off“.

• The system will never require the driver to take back control, which
would be both difficult to achieve [9] and would also have a pro-
nounced detrimental effect on the „quality time“ gained from an AD
feature.

• The system may only request that the driver take back control within
more than a few dozen seconds to allow a smooth transition to user-
operated mode. If the driver does not take back control when asked
to, the system needs to enter a safe state on its own.

If the AD system encounters a fault and/or if the driver does not respond
to a request to intervene (exact time frame subject to concrete system spe-
cifications), the vehicle will perform a DDT fallback operation. We assume
that this consists of the execution of a Minimal Risk Maneuver (MRM) [7] to
enter a Minimal Risk Condition (MRC), e.g., pulling over to the right side /
emergency lane and coming to a controlled stop or (if this is no longer
feasible) coming to a controlled stop in the current lane, but excludes re-
covery, i.e., the AD system does not attempt to continue driving without a
full reset after entering the MRC.

⁴ These classification schemes are still evolving, which is why we consider a more detailed outline of the
AD use case (including feature activation and deactivation) necessary.

SAE Level 4 130
km/h

25www.the-autonomous.com

1.1.3 FUNCTIONALITY PROVIDED TO USER

In the following, we define an assumed version of a HWP feature, similar
to proposals from different OEMs. These allow the driver of a passenger
car (sedan, SUV, crossover, or similar vehicle with relatively simple vehicle
dynamics) to take their eyes off the road and perform other tasks while on
a highway, with the AD system performing the entire DDT (lateral and lon-
gitudinal vehicle motion control and complete Object and Event Detecti-
on and Reaction (OEDR)) and assuming full responsibility.

The Operational Design Domain (ODD) of the HWP feature is outlined in
more detail in Appendix A: ODD outline of reference AD use case.

ID Statement

U1 The HWP feature supports lane keeping.

U2 The HWP feature supports lane changes.

U3 The HWP feature supports traffic jams (stop & go traffic).

U4 The HWP feature can be set to continue driving on the current highway.

U5 The HWP feature can be set to go to a target highway exit.

U6 The HWP feature supports speeds of up to 130 km/h.

U7 The HWP feature visually presents its status (e.g., off / on / malfunctioning) as
well as its world model and motion plan to the passengers.

26 www.the-autonomous.com

1.1.4 FEATURE ACTIVATION, DEACTIVATION, AND REQUESTS TO
INTERVENE

ID Statement

U8

We assume that “regular activation” of the HWP feature could proceed as fol-
lows:

• The driver presses the "activate HWP" button.

• The system checks that all conditions for its activation are fulfilled (see Ap-
pendix A: ODD outline of reference AD use case) and indicates the result
to the driver.

• The system gradually offers more resistance to steering wheel and pedals.

U9

We assume that “regular system-initiated deactivation” of the HWP feature could
proceed as follows:

• The system visually represents the automated driving system’s world mo-
del, motion plan and diagnostics to the user to simplify the (requested)
control takeover for the user.

• The system indicates that it is approaching a point where the conditions
for activation will no longer be fulfilled (end of the mission, change of ex-
ternal circumstances, detected failure, etc.).

• The driver presses the "acknowledge deactivation" button.

• The system checks that the driver is capable of driving (attentive and
hands on the steering wheel) and indicates the result to the driver.

• The system gradually offers less resistance to steering wheel and pedals.

• If the driver fails to resume control, the system executes an MRM when the
conditions for activation are no longer fulfilled.

U10
We assume that “regular driver-initiated deactivation” of the HWP feature could
proceed similarly to “regular system-initiated deactivation”, but without the first
two steps.

U11

We assume that “fast driver-initiated deactivation” of the HWP feature could
proceed as follows:

• The driver puts their hands on the steering wheel and/or feet on the pedals.

• The driver overrides the resistance offered by the system.

• The system indicates to the driver that it has relinquished control.

U12

We assume that “driver-initiated emergency deactivation” of the HWP could
proceed as follows:

• The driver presses the "pull over" button.

• The system indicates to the driver that it will come to a controlled stop.

• The system executes an MRM.

27www.the-autonomous.com

1.1.5 DEGRADED FUNCTIONALITY

Figure 4: State diagram of different operating modes.

ID Statement

U13 The HWP feature has a nominal mode (routine/normal operation), during
which it is capable of executing the mission.

U14 The HWP feature has a degraded mode (see also Figure 4), during which it
will execute an MRM (pulling over, controlled stop, or emergency stop) [7].

U15
The HWP feature will enter degraded mode if any part of the AD system en-
counters errors seen as critical to the ADI functionality or if the ODD is viola-
ted.

U16 After entering degraded mode (unable to continue mission), the HWP feature
will not activate again without a full reboot.

U17
In degraded mode, the HWP feature will try to come to a controlled stop in
(what is understood as) a safe enough location (i.e., emergency lane or right-
most lane). [First choice]

U18 If this is not possible, the HWP feature will try to come to a controlled stop in the
current lane of travel. [Second choice]

U19 If this is not possible, the HWP feature will try to come to an emergency stop.
[Third choice]

U20
The HWP feature does not have a limp-home mode, during which it is capable
of continuing the mission with reduced functionality (e.g., reduced speed) an-
d/or try to restore full functionality (e.g., partial reboot while continuing to drive).

28 www.the-autonomous.com

1.2 SYSTEM BOUNDARY
1.2.1 OVERVIEW

The Working Group „Safety & Architecture“ primarily considers a system
providing AD functionality, i.e., the Automated Driving Intelligence intro-
duced previously (recall Figure 1). In this section, we lay out the boundary
of this AD Intelligence and its interactions with other systems outside this
system boundary. Due to our focus on system conceptual architectures (as
opposed to detailed SW or HW architectures), we only describe the data
and control flow on interfaces and omit HW-related aspects such as con-
crete network topologies, power supply or cooling. Figure 4 shows such a
layout, providing a simplified representation including the elements that
“close the loops”, i.e., the physical vehicle and the human making use of
the UI system.

Figure 5: AD Intelligence and its interfaces to surrounding systems.

The AD Intelligence is connected to four other systems (see Figure), which
are described in more detail in the following subsections. The main data
flow is from the Sensor System to the AD Intelligence and then from the AD
Intelligence to the Actuator System (receivers). The AD Intelligence’s main

29www.the-autonomous.com

service interface is to the Actuator System. The other service interfaces of
the AD Intelligence are mainly for sensor control and diagnostics.

1.2.2 SENSOR SYSTEM

The Sensor System provides the main inputs to the AD Intelligence. It con-
sists of a set of sensors and/or related ECUs (e.g., zonal controllers).

• The Sensor System provides measurement data from a sensor set
(SensorData). This interface must be capable of real-time behavior
and must be fail-operational (e.g., redundant with absence of de-
pendent failures, encompassing common cause and cascading fai-
lures).

• The Sensor System also provides diagnostic information to the Dia-
gnostics System (DiagnosticsData).

• The Sensor System receives calibration and control data (SensorControl).

• The sensor set must be sufficient⁵ for the AD Intelligence to offer its
service (nominal and degraded functionality). The sensor set compri-
ses “outward-looking” sensors (e.g., radar, camera, lidar, or ultraso-
nics), “inward-looking” sensors (e.g., IMU), and digital information
(e.g., V2X or HD Maps).

1.2.3 ACTUATOR SYSTEM (RECEIVERS)

The Actuator System is the consumer of the service provided by the AD
Intelligence. It consists of a set of “receivers”, which may be actuator con-
trol ECUs and/or smart actuators.

• The Actuator System receives a set of setpoints (ActuatorData). This
interface must be capable of real-time behavior and must be fail-
operational. On the other hand, the Actuator System might be capa-
ble of fail-degraded operation.

• The Actuator System also provides diagnostic information to the Dia-
gnostics System (DiagnosticsData).

• The actuator set must be sufficient to control the vehicle even in the
presence of a single fault.

⁵ “Sufficient” covers multiple aspects, which go beyond the scope of the “Safety & Architecture” Working
Group. Among these are that the sensor set needs to have a sufficient coverage area (detection range)
for the intended functionality, needs to be able to detect all relevant objects (e.g., via employing
different sensor types), and needs to be robust to faulty sensors (e.g., via redundancy).

30 www.the-autonomous.com

1.2.4 UI SYSTEM

The UI System allows the user to control the AD Intelligence. Some parts
of the UI are safety-critical, e.g., to prevent unintended activation / deac-
tivation or driver monitoring.

• The UI System provides commands such as activation / deactivation
requests, acceleration, steering and brake requests, destination in-
put, or pull-over request (UserInput).

• The UI System receives requests and status information such as take-
over request, or environment model for the Heads-Up Display (HUD)
and presents those to the user (UserInformation).

• The UI System also provides diagnostic information to the Diagno-
stics System (DiagnosticsData).

1.2.5 DIAGNOSTICS SYSTEM

The Diagnostics System collects status information from all systems in the
vehicle and may also contain data recording functionality (logging an-
d/or black box). In contrast to traditional automotive diagnostics, the Dia-
gnostics System we refer to here is focused on the AD operation and
should be seen as an abstraction of existing and required (new) features.
At least part of this system needs to be onboard the vehicle.

• The Diagnostics System provides status information such as detected
malfunctions in other systems (SystemStatus).

• The Diagnostics System receives status information from all other sys-
tems (DiagnosticsData).

31www.the-autonomous.com

1.3 SYSTEM REQUIREMENTS

While Section 1.1 describes the functionality offered by the AD Intelligence from
a user perspective, we define assumed high-level requirements regarding the
services offered by the system from a technical perspective in this section.

S1: AD INTELLIGENCE OUTPUT TIMELINESS

S2: AD INTELLIGENCE OUTPUT AVAILABILITY

S3: AD INTELLIGENCE OUTPUT CORRECTNESS

S4: AD INTELLIGENCE OUTPUT CONSISTENCY

ID Statement Notes

S4

The AD Intelligence shall enable the
Actuator System (receivers) to ensure
the consistency of executed actuator
setpoints.

This applies to consistency between the
setpoints executed by redundant receivers
/ actuators, even for the case where multi-
ple communication channels are used,
possibly connecting to multiple receivers.

ID Statement Notes

S3

The AD Intelligence shall not provide
erroneous outputs to the Actuator Sys-
tem (receivers), implying that appropri-
ate error detection, error handling or
fault-masking should be introduced to
reduce the likelihood of propagating
failures (stemming from errors within
the AD Intelligence).

Allowing an erroneous output to reach
the actuators would lead to potential
harm to the passengers or other traffic
participants, e.g., due to a collision.

ID Statement Notes

S2

The AD Intelligence shall provide out-
puts to the Actuator System (receivers)
in a fail-operational way to each recei-
ver.

„In a fail-operational way“ means that the
AD Intelligence continues to perform its
nominal function or a degraded function
in the presence of any one single fault.

ID Statement Notes

S1
The AD Intelligence shall provide out-
puts to the Actuator System (receivers)
in a timely manner.

„Timely manner“ is here used to refer to
fast enough (for the dynamics at hand)
and predictably (e.g., with sufficiently
low jitter, and in every cycle)

32 www.the-autonomous.com

S5: PERCEPTION MALFUNCTION DETECTION

S6: AD INTELLIGENCE DIAGNOSTICS

1.4 ABSTRACTION LEVEL

The discussion of system architecture can occur on several abstraction le-
vels, which may be suited better or worse to the consideration of certain
issues. In the following, we outline the levels relevant to the Safety & Archi-
tecture Working Group.

On a high abstraction level, we talk about “conceptual architectures”.
Here, the system is composed of a small set of well-encapsulated subsys-
tems that fail independently (so-called “Fault Containment Units” or
FCUs). Each subsystem can comprise parts of a processing channel or
even an entire processing channel (sensors to actuators). A point of parti-
cular interest on this abstraction level is how to achieve and manage suf-
ficiently independent redundancy within the system.

On a low abstraction level, we talk about HW and SW architectures.
Here, the system is composed of a potentially large set of HW and SW
components, which may be highly particular to the specific implementati-
on and system vendor.

The Safety & Architecture Working Group focuses on the discussion of con-
ceptual architectures for two main reasons:

• Conceptual architectures are sufficiently non-trivial, i.e., a reference
solution and industry-wide cooperation can provide benefits to sys-

ID Statement Notes

S6 The AD Intelligence shall report its sta-
tus to the Diagnostics System.

This is not expected to be a differentiating
factor between different conceptual archi-
tecture candidates.

ID Statement Notes

S5

The AD Intelligence shall implement
strategies to detect and react to per-
ception malfunctions and performance
limitations due to environmental condi-
tions or other causes related to the Sen-
sor System.

This is not expected to be a differentiating
factor between different conceptual archi-
tecture candidates. Perception (and also
localization, prediction, and ODD detecti-
on) is outside the scope of this study, but
nevertheless considered at the functional
level in section 2.8

33www.the-autonomous.com

tem owners. Identifying the underlying principles for achieving high
integrity and high availability and combining them in a transparent
way leads to a better understanding.

• Conceptual architectures are sufficiently generic, i.e., a reference so-
lution can be applicable to most system owners. Taking vendor-spe-
cific constraints, e.g., commercial considerations or integration with
legacy systems, into account is shifted to the specific HW and SW im-
plementation.

Specific HW or SW architectures are not considered. Not only would im-
plementation-specific considerations constrain applicability and distract
from the underlying principles of the conceptual system architectures, but
they are also likely to quickly become obsolete. However, we will identify
considerations that apply when mapping a conceptual architecture to
HW and SW in order to ensure the desired system properties.

1.5 GENERAL CONSTRAINTS AND DESIGN PRIN-
CIPLES

When coming up with conceptual system architectures intended to satisfy
the system requirements in section 1.3, several aspects should be considered:

• There are certain basic technological limitations which constrain
how very high reliability systems can be designed, built using reali-
stic HW and SW components, and tested. Such general constraints
are summarized in section 1.5.1.

• In addition, there is a set of empirical best practices that should be
respected in a sound conceptual system architecture. Such design
principles are summarized in section 1.5.2.

1.5.1 GENERAL CONSTRAINTS

G1: DESIGN FAULTS IN LARGE AND COMPLEX MONOLITHIC SYSTEMS

ID Statement Notes

G1
We assume that it is impossible to find
all design faults in a large and complex
monolithic SW system.

Including sample omissions and biases in
machine learning training.

34 www.the-autonomous.com

Rationale

• A SW system with more than ~10k lines of code will statistically con-
tain at least one SW fault despite adequate testing [10] [11]. This does
not mean that a SW system with fewer lines of code will necessarily
be free from faults with adequate testing (e.g., control flows can still
be complex). Heisenbug type faults [12] [13], which may appear to
“alter” its behavior when attempting to investigate or reproduce it,
can prove particularly hard to detect and eliminate. A typical exam-
ple of a Heisenbug fault is a race condition in concurrent software.

• The ADI can be assumed to contain several subsystems that each
contain more than a million lines of source code.

G2: SINGLE-EVENT UPSETS IN NON-REDUNDANT HW

Rationale

• SEUs are caused by ionizing particles, e.g., cosmic radiation, which
affects electronic devices such as processors or memory. The impact
of this depends on the executed SW, but in the worst case, e.g., for
brittle neural networks, even a single bitflip can lead to misclassifi-
cation [14].

G3: TESTING AND SIMULATION OF VERY HIGH SAFETY-RELATED AVAILABILITY OF
LARGE MONOLITHIC SYSTEM

Rationale

• Depending on the testing assumptions, it would take hundreds of
millions to hundreds of billions of miles driven to demonstrate the reli-
ability of autonomous vehicles [15] [16]. Additional methods like simu-
lations can only alleviate this to some extent.

ID Statement Notes

G3

We assume that it is impossible to esta-
blish the very high safety-related
availability of a large monolithic sys-
tem by testing and simulation alone.

The order of magnitude considered here is
similar to the rate of random HW faults for
ASIL D.

ID Statement Notes

G2
We assume that it is impossible to miti-
gate single-event upsets (SEUs) in non-
redundant HW.

While the architectural evaluation in this
report will not go to a detailed hardware
level, the implication is that errors due to
SEUs must be considered in the system-le-
vel architecture design.

35www.the-autonomous.com

G4: SPECIFICATION OF CRITICAL SCENARIOS

Rationale

• The challenge relates to the „open“ environments of many ODDs and
moreover to the fact that traffic behavior will change as AVs are in-
troduced [17].

• The field of automated driving is relatively new compared to the ae-
rospace industry. Even in the comparably “simple” environment of the
sky, it took several decades of collecting and studying rare and ex-
ceptional situations to establish similarly high dependability.

• Examples for such edge cases are rare traffic participants (costumed
pedestrian, vehicle with odd shape, vehicle with sky blue paint or
mirror finish, etc.), rare events (complex traffic accident, confusing
lost load on road, etc.), or rare environmental conditions (moon in
ash cloud, etc.).

G5: FREQUENT SWITCHING

Rationale

• Under certain conditions, switching back and forth between the tra-
jectories / sets of setpoints of two subsystems may lead to unsafe be-
havior, e.g., when "mixing" evasive action to the left and the right
and thus never moving far from the center.

ID Statement Notes

G5

We assume that it is unsafe to frequent-
ly switch back and forth between the
trajectories generated by different sub-
systems.

It is known from basic control theory that
„bumpless transfer“ requires some form of
interaction between controllers involved in
switching. Trajectories generated by diffe-
rent subsystems might not implement the
same driving strategies, e.g., with respect
to passing obstacles vs. braking.

ID Statement Notes

G4

We assume that it is impossible to preci-
sely specify all critical scenarios that
can be encountered within the ODD
specified for automated driving.

The corresponding risks can be reduced
by guidance from relevant standards such
as SOTIF and UL4600, including through
ODD and field monitoring.

36 www.the-autonomous.com

G6: CHECKS TO DETERMINE PLAUSIBILITY OF ANOTHER SUBSYSTEM

Rationale

• There are many ways of designing safety mechanisms that cover the
essential safety goals of the AD Intelligence. Instead of the trajectory,
checking may also apply at the level of a set of setpoints for the
Actuator System.

▪ Proposed trajectories can be checked against another
environment model (than the one that was used to generate it),
i.e., whether certain safety goals are violated.

▪ Proposed sets of setpoints can be checked against another
environment model and against the corresponding proposed
trajectory, i.e., whether the two are consistent.

▪ A runtime environment model can be checked for violations of
assumptions or of the ODD.

G7: RATE OF SAFETY INCIDENTS

Rationale

• While the failure rate targets in ISO 26262 only apply to random HW
faults, the dependability goals for the AD Intelligence apply jointly to
hazards arising from random and systematic HW faults, systematic
SW faults, and insufficient specifications or performance limitations
(SOTIF).

ID Statement Notes

G7

We assume that the target rate of ha-
zardous behavior for the AD Intelli-
gence functionality covers random
faults, systematic faults, and functional
insufficiencies.

This assumption is included to be able to
reason about architectural candidates, re-
flecting a failure rate that does not take
into account the causes of malfunctions.

ID Statement Notes

G6

We assume that it is possible to develop
a subsystem which can assess the plau-
sibility of the proposed trajectory pro-
duced by another subsystem based on
the former’s internal environment mo-
del.

No subsystem will have access to ground
truth but is in principle able to assess the
perceived correctness of the trajectory
provided by another system. Comment:
Special focus must be put on eliminating
dependent failures.
With perceived correctness of the trajecto-
ry, we refer to satisfying certain safety re-
quirements (trajectory verification).

37www.the-autonomous.com

G8: IMPACT OF SYSTEM FAILURE

Rationale

• This applies only to situations where the AD Intelligence as a whole
fails. The failure of single subsystems can be compensated for by the
conceptual architecture.

• While active, the AD Intelligence replaces the human driver. Howe-
ver, according to traffic statistics [15] [18], only a small fraction of re-
ported accidents (human-driven cars) involves fatalities (0.1-0.2%)
or severe injuries. In addition, a significant fraction of minor acci-
dents is not even reported to authorities (25-60%) [15] [19]. Most
wrong decisions made by human drivers thus do not have severe
consequences. We cannot make the outright assumption that the se-
verity distribution in accidents caused by human drivers is in any way
similar to those caused by an AD Intelligence; however, it is clear
that not all failures of the AD intelligence will lead to fatal accidents.

• The assumption is related (complementary) to the “improvement fac-
tor” demanded of an AD Intelligence over the average human driver.

G9: HW FAULT CHARACTERISTICS

Rationale

• This explicitly excludes the consideration of early failures or wear-out
/ aging effects ("bathtub" curve).

ID Statement Notes

G9

For FIT rate calculations, we assume
that HW failure rates are constant over
time (i.e., not a function of time), and
that there are no dependent failures
(i.e., that no cross-correlations bet-
ween different subsystems exist).

HW FIT rate calculations focus on random
HW faults only. Systematic HW faults have
to be considered in a different context.

ID Statement Notes

G8

We conservatively assume that all failu-
res lead to hazardous behavior of the
AD Intelligence, leading to accidents in
the worst case.

This is a pessimistic assumption, but con-
servativeness was deliberately chosen to
be on the safe side. While some failures,
e.g., a collision trajectory, will be highly
hazardous, other errors may not impact
risk to a large extent (e.g., a slightly alte-
red trajectory).

38 www.the-autonomous.com

G10: INTERFERENCE FROM OTHER SYSTEMS

Rationale

• Inputs from other safety-related systems, e.g., Automated Emergency
Braking (AEB) or similar, can be overridden on the Actuator System
side while the AD Intelligence is in operation.

1.5.2 DESIGN PRINCIPLES

D1: FAULT CONTAINMENT UNITS

Rationale

• See G1: Design faults in large and complex monolithic systems, G2:
Single-event upsets in non-redundant HW, and G3: Testing and si-
mulation of very high safety-related availability of large monolithic
system.

• To reduce the complexity of a large system, one of the simplest and
most robust techniques is to allocate separable functions to subsys-
tems that can be shown to be as independent from each other as
possible [10]. Such subsystems should form FCUs, which can be vali-
dated separately.

ID Statement Notes

D1
The AD Intelligence shall consist of a set
of independent subsystems that each
form a Fault Containment Unit (FCU).

Special emphasis needs to be placed on
avoiding dependent failures. The appro-
priate strategies for achieving this depend
on the complexity of the subsystem and the
consequences that dependent failures
can cause.

ID Statement Notes

G10
We assume that other safety-related
systems do not interfere negatively with
the AD Intelligence.

Alternatively phrased, we assume an ar-
chitecture which coordinates the safety-
related behavior of the vehicle.

39www.the-autonomous.com

D2: SIMPLE AND COMPLEX SUBSYSTEMS

Rationale

• See G1: Design faults in large and complex monolithic systems, G3:
Testing and simulation of very high safety-related availability of lar-
ge monolithic system, and G4: Specification of critical scenarios.

• Simple subsystems should be developed fully to ASIL D, be fully for-
mally specified (to preclude Byzantine faults⁶ during runtime), and
contain a relatively small number of lines of code (i.e., thousands,
not millions).

D3: DIVERSITY AND REDUNDANCY FOR COMPLEX SUBSYSTEMS

Rationale

• See G1: Design faults in large and complex monolithic systems, G3:
Testing and simulation of very high safety-related availability of lar-
ge monolithic system, G4: Specification of critical scenarios, D1: Fault
Containment Units, and D2: Simple and complex subsystems.

• Complex subsystems must be assumed to exhibit Byzantine faults,
i.e., inconsistent or arbitrary behavior when faulty. Due to their size
and complexity, design faults and HW failures become inevitable
and must be addressed by employing redundancy and design diver-
sity.

ID Statement Notes

D3 The complex subsystems of the AD Intel-
ligence shall be diverse in design.

Groups of redundant subsystems may
have similar or identical purposes; in
which case they should have different
designs.

ID Statement Notes

D2

The conceptual architecture of the AD
Intelligence shall distinguish between
simple subsystems (fully verifiable – pre-
ferably with formal techniques – and
deterministic, e.g., due to being formal-
ly specified, having few lines of code,
and avoiding algorithmic complexity)
and complex subsystems.

⁶ See https://en.wikipedia.org/wiki/Byzantine_fault.

40 www.the-autonomous.com

D4: PROVABLE CORRECTNESS FOR SIMPLE SUBSYSTEMS

Rationale

• See G1: Design faults in large and complex monolithic systems, D1:
Fault Containment Units, D2: Simple and complex subsystems.

• It is difficult to achieve replica determinism, i.e., identical behavior
from two instances of the same implementation, for complex subsys-
tems. However, this can be achievable for relatively simple decision
logic, using simple, fully verifiable SW running on fault-tolerant HW.

D5: AVOIDANCE OF EMERGENT BEHAVIOR

Rationale

• See G3: Testing and simulation of very high safety-related availability
of large monolithic system and G4: Specification of critical scenarios.

• As establishing the very high dependability of a monolithic system is
not feasible, it is necessary to provide evidence of each constituent
subsystem’s dependability separately. Such an effort is vastly facilita-
ted if these subsystems are coherent and avoid emergent behavior
when interacting with other subsystems.

D6: TRANSIENT AND PERMANENT FAULTS

ID Statement Notes

D5
The conceptual architecture shall mini-
mize interactions among the different
subsystems.

ID Statement Notes

D4

The simple subsystems of the AD Intelli-
gence shall be sufficiently simple such
that they are fully verifiable (formally
specified, few lines of code).

It is assumed that the simple subsystems
will be concerned with arbitration invol-
ving logic.

ID Statement Notes

D6

If the AD Intelligence detects a large
number of transient faults within one of
its subsystems, it shall consider this a
permanent fault in this subsystem.

41www.the-autonomous.com

Rationale

• See G6: Checks to determine plausibility of another subsystem.

• When transient faults occur too often, it is reasonable to consider this
a permanent fault and to react appropriately (e.g., request driver to
take over and/or execute an MRM).

D7: MITIGATION OF COMMON-CAUSE HAZARDS

Rationale

• The various hazards that can lead to ADS losses are a function of the
ODD and use case. Functional insufficiency is a major (if not majority)
contributor to hazardous ADS behavior [22]. There is an opportunity
to address them at the design level too, not just within V&V efforts.

• Each channel of the architecture pattern can be characterized by
capabilities. As introduced in the SaFAD whitepaper [4], these capa-
bilities can be understood as being the fundamental set of system
properties that are responsible for safety (nominal/degraded functi-
onality – implemented via elements). The channel’s functional
complexity is indicated by the depth of the slice, and the operational
domain coverage (i.e., ODD, Operational Domain, or Target Opera-
tional Domain) is indicated by its area.

• Output insufficiency is a lack of the capability that is intended to be
provided; shared output insufficiency between channels allows trig-
gering conditions to manifest as losses and are analogous to the
(un-)known unsafe area in SOTIF [22]. Likewise, shared errors bet-
ween channels allow fault root causes to manifest as losses.

▪ Therefore, the conceptual design goal of minimizing the shared
lack of capability across channels can be formulated. The
conceptual dimensioning and positioning of errors and output
insufficiency across channels must be well understood for

ID Statement Notes

D7

The conceptual architecture shall mini-
mize the possible propagation paths of
hazards by mitigating against com-
mon-cause faults and functional insuf-
ficiency across the design pattern [20]
[21].

Adaptation of the Swiss-cheese model in
Figure 6 and Figure 7 is proposed to guide
awareness regarding propagation of ha-
zards through system channels. It further-
more supports the abstract design goal
formulation of minimizing overlap of the
holes. An example is provided in Appendix
C: Sample analysis points regarding diffe-
rent conceptual architecture patterns.

42 www.the-autonomous.com

mitigation efforts (such as diverse, heterogeneous
implementations) to offer complementary capability.

▪ As indicated by the model, it cannot be assumed that efforts to
achieve diversity with respect to fault tolerance will also satisfy
the diversity required to mitigate functional insufficiency. There
must be an awareness that fault-tolerant implementations
alone do not exclude the possibility of functional insufficiencies
leading to losses.

Figure 6: Conceptual architecture-level hazard propagation, as expressed via an adaptation of the
Swiss-cheese model

Figure 7: Bird's-eye view - Reduction of hole overlaps (errors, output insufficiency) as a design goal for channel design

43www.the-autonomous.com

2 ARCHITECTURE
EVALUATION CRITERIA
2.1 ARCHITECTURAL DECISIONS AND PROCESSES

The term “architecture” can cover both commercial aspects, e.g., as busi-
ness architectures, and technical aspects. In the latter, it can cover diffe-
rent abstraction levels, e.g., functional architectures, conceptual archi-
tectures, logical architectures, down to very specific physical HW and SW
architectures.

As stated in section 1.4, the focus of the Safety & Architecture Working
Group lies on the conceptual abstraction level. To make sound architectu-
ral decisions here, we first need to define a set of evaluation criteria suita-
ble for this abstraction level. These should not exist in isolation, i.e., they
should relate to relevant decisions the target reader of this document
needs to make. To ensure this relevance, we first outline a persona for the
assumed reader, i.e., someone responsible for making architectural deci-
sions as part of a systems design process.

2.1.1 SYSTEM OWNER PERSONA

It lies within the responsibility of “system owners” (often system architects),
whom we consider the intended readers of this document, to ensure a
consistent systems design across all abstraction levels (recall Figure 2). In
the following, we outline the system owner persona.

The system owner can work for an OEM, a mobility company, or for a sys-
tem supplier:

• Large and/or technologically leading OEMs may try to bring most of
the architectural design in-house. In this case, the system owner
needs to make all architectural decisions, perform mapping bet-
ween abstraction levels, and ensure consistency.

• Small and/or technologically following OEMs, as well as mobility
companies, may try to buy off-the-shelf system solutions. In this case,
many architectural decisions are made by the system supplier, but
the system owner still needs to understand the different architecture
perspectives to pick a suitable system solution.

44 www.the-autonomous.com

• System suppliers are often focused on providing off-the-shelf HW
platforms but may also extend to SW platforms and application SW
solutions. In this case, the system owner may need to demonstrate to
prospective customers that the offered solutions can be combined
into a suitable AD system.

1.1.2 ARCHITECTURE DESIGN PROCESS AND DECISIONS

Textbook systems design should start at the top-most, user-focused level
and then – step by step – become more and more detailed and specific as
the design is refined. This may involve some of the following steps (see
also Figure 8):

• High-level users and use cases are defined.

• Use cases are broken down into high-level system requirements.

• The system requirements are used to develop the high-level systems
design.

• The systems design is used to derive more detailed application SW
requirements.

• The application SW requirements are used to develop the applicati-
on SW design.

• The application SW design is used to derive requirements for the SW
platform and HW platform.

• The platform requirements are used to develop the SW and HW
platform designs.

In practice, the architecture design process is often not top-down. Several
factors can contribute to this:

• An incomplete understanding of the problem space or insufficient
domain knowledge may necessitate building a prototype before wri-
ting requirements.

• Emergent properties in the environment (e.g., the environment chan-
ging when exposed to the system) can also only be understood once
a prototype is in the field.

• External constraints and commercial considerations (e.g., the much
longer lead times and in HW development) can also shape the de-
sign before requirements are even known. In addition, legacy cons-
traints may also come into play.

45www.the-autonomous.com

Working bottom-up can lead to situations where the design of the HW
platform constrains the design of the application SW and ultimately also
the conceptual architecture.

The system owner must make architectural decisions at each of the steps
described above:

• What is a suitable conceptual architecture for the particular use
cases?

• What is a suitable SW architecture for the particular use cases? Does
it match the conceptual architecture? Is it commercially viable?

• What is a suitable HW architecture for the SW stack? Does it match
the conceptual architecture? Is it commercially viable?

• Which of the available system solution offerings is suitable for the
particular use cases?

Figure 8: Idealized mapping process between different architectural abstraction levels.

Conceptual arch.

HW arch. SW arch.

Mapping
conciderations

46 www.the-autonomous.com

2.2 GENERAL REQUIREMENTS

There are many properties that a well-designed AD Intelligence needs to
have. Only some of these are suitable for differentiating different architec-
tures on the conceptual level. Many of the attributes applicable at the
physical level can be assumed to be present as long as the mapping of
conceptual architecture elements to HW and SW components is done
properly, and automotive development processes are followed.

For completeness, we list some of these properties in the following.

2.2.1 AUTOMOTIVE QUALITY

All components used in the AD Intelligence need to satisfy the usual auto-
motive quality standards such as AEC-Q100 to ensure suitability for auto-
motive use cases. This can involve robustness to shocks, high and low tem-
peratures, etc.

2.2.2 ADHERENCE TO STANDARDS

There are several industry standards that need to be followed in the deve-
lopment and production of the AD Intelligence. The ones that immediately
come to mind are ISO 26262 (Functional Safety) [2], ISO 21448 (Safety of the
Intended Functionality) [3], ISO 21434 (Cybersecurity) [6], UL 4600 (Safety
Case Assessment) [23], and SAE J3018 (Safety of On-Road Testing) [24].

2.2.3 FIELD MONITORING AND UPDATE PROCESS

Even with the most rigorous safety development process, a sufficiently
complex system will almost inevitably have flaws that were underestima-
ted or unforeseen. Therefore, it is necessary to continuously monitor vehic-
les in the field and analyze the collected data, e.g., to establish that as-
sumptions made in the safety analysis continue to hold true over the
lifetime of the vehicle. Flaws can be addressed by providing timely up-
dates to minimize exposure to both safety and security vulnerabilities.

2.2.4 COMFORT AND FUNCTIONALITY

Ultimately, the AD feature needs to provide benefits to the end user. This
implies that the AD function controls the vehicle in a manner that is both
comfortable (e.g., low acceleration and low jerk) and beneficial to the
passengers (e.g., a useful speed limit).

47www.the-autonomous.com

2.2.5 MODULARITY AND MAINTAINABILITY

Road vehicles often have an intended minimum economically viable life-
time of around 15 years⁷. Over such an extended period, it is likely that
several components, particularly complex ones such as high-perfor-
mance electronics, will need to be maintained or replaced. As AD systems
and their components are relatively expensive, it is advantageous to de-
sign them in a modular (and thus more easily maintainable) manner.

2.2.6 PHYSICAL IMPLEMENTATION

Some attributes are specific to the physical implementation of the AD In-
telligence. In general, the Electronic Control Units (ECUs) involved in the
AD functionality need to be sufficiently small to fit inside the constrained
internal space of the vehicle. They also need to have sufficiently low pow-
er consumption to not have a severe impact on the range of electric vehic-
les and/or cause issues with heat dissipation. Finally, the affordability of
the system should also not be neglected.

2.2.7 SAFETY

The AD Intelligence must be developed to the highest applicable level as
defined in ISO 26262 (i.e., ASIL D) and ISO 21448 (see also sections 5.3.2
and 5.3.3, respectively)⁸. There are two elements of safety for a fail-ope-
rational/fail-degraded system: the availability of the system, which is the
probability that the system keeps operating properly when a failure oc-
curs⁹, and the safety of the available outputs itself, which avoids an unre-
asonable risk due to their execution (e.g., collisions).

ISO 26262 uses the FIT rate (Failures in Time, i.e., per billion hours of ope-
ration) as a metric to quantify the occurrence of random HW faults. Other
relevant causes for safety incidents such as systematic HW faults, syste-
matic SW faults (bugs), and functional insufficiencies (SOTIF), are mainly
addressed by prescribing safety processes¹⁰.

⁷ Of course, many vehicles continue in service much longer.
⁸ Through the use of ASIL decomposition, the ASIL for many subsystems and components can be
lowered, e.g., to ASIL B(D).
⁹ Loss of functionality, e.g., turning the system off in case of a malfunction, can lead to a hazard.
¹⁰ ISO 21448 specifies mandatory qualitative metrics for the residual risk. An example given for this is the
maximum number of accidents per hour.

48 www.the-autonomous.com

To quantify the required level of safety of the system more comprehensive-
ly, we define the total rate of safety incidents (including all the underlying
causes listed above) that can lead to unsafe situations (see G7: Rate of
safety incidents). This rate of safety incidents for the system can be calcu-
lated through a Failure Modes, Effects, and Diagnostics Analysis (FMEDA)
and a Fault Tree Analysis (FTA). Based on the reference AD use case, we
propose a tentative target for the rate of safety incidents of 10-100 per bil-
lion hours of operation (10-⁸ – 10-⁷ per hour).

Different parties from industry and academia have discussed widely vary-
ing target rates [25] [26] [27]. These range from ~10-⁹ per hour (or even
lower) up to ~10-⁷ per hour. These considerations are often based on the
average rate of traffic accidents (or fatalities) for a particular use case
(total or just highway) and an improvement factor over the average hu-
man driver.

Such a derivation roughly proceeds as follows:

• The rate of reported traffic accidents (fatal and non-fatal) can be
estimated from traffic statistics [18] [15] [28]. This varies to a degree
between countries and by use case, depending on the typical
speed, the traffic situation complexity, and what other traffic partici-
pants are involved. The rate of fatal accidents is in the range of 1.7 x
10-⁷ – 5 x 10-⁷ per hour¹¹.

• The rate of reported non-fatal accidents from the same statistics is
typically 100x – 1000x higher, ranging from 7.1 x 10-⁵ to 2 x 10-⁴ per
hour. However, it cannot necessarily be assumed that this ratio will
be similar for AD. To demonstrate a positive risk balance, we should
therefore aim to build an ADI that has fewer safety incidents than hu-
mans have fatal accidents (see G8: Impact of system failure).

• The demanded improvement factor over the average human driver
depends on public acceptance. Values here can range from as high
as 1000x [25], which is used as a reference in aerospace, to as low as
4-5x [29], which people already find acceptable in surveys. An inter-
mediate value of 10x – 100x may be reasonable [26].

• We also need to neglect contributions from other causes that cannot
be addressed by the ADI (see Figure 9). Only causes equivalent to
the cognitive tasks otherwise performed by the driver can be consi-
dered for the target rate of safety incidents.

¹¹ Some of these rates are given in incidents per kilometers driven. When necessary, we assume an
average speed of 60 km/h for all driving and 110 km/h for highway driving to convert.

49www.the-autonomous.com

Our tentative target of 10-⁸ – 10-⁷ per hour for the rate of safety incidents is
an improvement of ~10x (1.7x - 50x) over the rate of fatal accidents and an
improvement of ~1000x (710x -20000x) over the total rate of accidents.

Figure 9: Coarse overview of causes contributing to accidents.

2.3 AVAILABILITY

Because there is no human driver to take over control, the availability of
the system, i.e., its readiness for correct service, also becomes crucial. We
define three evaluation criteria related to the availability attribute.

2.3.1 AVAILABILITY OF THE SYSTEM

A suitable conceptual system architecture must take Safety-Related
Availability (SaRA) into account. This means that it is designed in such a
way that no single fault can lead to the failure (or unavailability) of the
entire AD Intelligence. At least some degraded functionality needs to be
available and dispatchable. Key questions related to this are:

50 www.the-autonomous.com

• Does the conceptual system architecture maintain safety (integrity
and availability) in the presence of any single fault or functional in-
sufficiency¹²?

• Does the conceptual system architecture also cover all sufficiently
probable dual- and multi-point faults (including common cause
faults)?

If the conceptual system architecture scores badly on these questions, the
system owner should consider it unsuited for AD use cases where una-
vailability of the system is inherently unsafe, which is most driving situati-
ons other than parking.

2.3.2 DIAGNOSTICS SCHEME

If the different subsystems have self- or cross-checking diagnostic capabi-
lities, they can facilitate degradation schemes in the AD Intelligence (see
section 2.3.3). This enables them to react dynamically to each other’s con-
dition, e.g., by proactively switching to a more cautious course of action.
Key questions related to this are:

• Are the different subsystems aware of each other’s condition?

• Can the different subsystems adapt based on each other’s condition?

If the conceptual system architecture scores badly on these questions, the
system owner should consider the increased burden on the degradation
scheme.

2.3.3 DEGRADATION SCHEME

While a failure of the AD Intelligence needs to be prevented at all costs
(and thus be exceptionally rare), failures of a single subsystem will be
much more frequent. This can necessitate switching to a degraded mode,
where the AD Intelligence executes an MRM [67]¹³. If this occurs too fre-
quently or unnecessarily (e.g., due to a transient or recoverable fault), it
can adversely affect both the user experience and public safety (e.g., due
to blocked public roads). Key questions related to this are:

¹² The definition of single-point faults in ISO 26262 only covers HW faults, whereas we also consider SW
faults and functional insufficiencies.
¹³ Degradation schemes can have several levels, which are progressively less safe and desirable.
Schemes have been proposed to quantify such cascades and the respective acceptable probabilities of
each level [67].

51www.the-autonomous.com

• How noticeable is it to the end user when an error occurs in the sys-
tem?

• Are different levels of degradation possible and how graceful are
these?

• Is cold / warm / hot standby used (good for availability but bad for
power consumption)?

If the conceptual system architecture scores badly on these questions, the
system owner should consider the increased burden on the integrity of the
implemented function, as no additional lines of defense may exist.

There may be additional practical criteria such as minimizing risk redistri-
bution onto vulnerable population segments, but such issues are beyond
the scope of this report.

2.4 RELIABILITY

Whenever degradation is used in the system (see also section 2.3.3), the
full, nominal functionality is no longer available. This has a noticeable im-
pact on the user experience. In particular, frequent transient faults and/or
false positives should not lead to unnecessary degradation. Therefore, the
reliability of the AD Intelligence, i.e., its continuity of correct service, is im-
portant. We define one evaluation criterion related to the reliability attri-
bute.

2.4.1 AVAILABILITY OF THE NOMINAL FUNCTIONALITY

A suitable conceptual system architecture is based on concepts that pre-
vent unnecessary degradation, ensuring that the nominal functionality of
the AD Intelligence is available as much as possible. This is also related to
the redundancy management scheme, which is based on some kind of
arbitration and ultimately decides the behavior of the system based on a
limited set of inputs. Arbitration algorithms can be relatively simple, e.g.,
a simple silencing function in Doer/Checker, or rather complex, e.g., in-
exact voting algorithms. Complex arbitration algorithms may be difficult
to implement in a robust way, potentially outweighing benefits from
achieving a simpler conceptual architecture (see also sections 2.3.1,
2.3.3, 2.5.1, and 2.7.1). Key questions related to this are:

• Is the system prone to false positives that make the nominal functio-
nality unavailable?

52 www.the-autonomous.com

• Is the system sufficiently reliable to avoid creating nuisances like
blocking public roads?

• Do the arbitration algorithms require complex and abstract decisi-
ons?

• Can these decisions be converted to pseudo-code and broken down
into manageable logical statements?

If the conceptual system architecture scores badly on these questions, the
system owner should consider the need for a redesign of the system or al-
ternatively the increased burden on the quality of the primary functionali-
ty. This may require significantly higher testing efforts.

2.5 CYBERSECURITY

While the focus of the Safety & Architecture Working Group is on safety
and we consider a detailed cybersecurity analysis outside our scope,
some aspects of conceptual system architectures have an indirect impact
on security considerations. We define two evaluation criteria related to
the cybersecurity attribute.

2.5.1 INTERACTIONS BETWEEN SUBSYSTEMS

A suitable conceptual system architecture consists of several well-encap-
sulated subsystems that ensure that faults arising within them do not pro-
pagate to the rest of the system, i.e., Fault Containment Units (FCUs). Si-
milar considerations apply from a security perspective, i.e., where few
and well-defined interfaces between subsystems are beneficial. Key
questions related to this are:

• How many communication interfaces are there between the different
subsystems?

• How frequent and extensive (bandwidth) are these interactions?

• Are well-defined and restricted interfaces used?

If the conceptual system architecture scores badly on these questions, the
system owner should consider that the security concept must more exten-
sively consider the case where multiple subsystems are compromised si-
multaneously via propagation.

53www.the-autonomous.com

2.5.2 INTERACTIONS WITH EXTERNAL SYSTEMS

It is generally assumed that the AD Intelligence will need to interact with
external systems, e.g., for map and traffic data, V2X, or to receive up-
dates. Reducing the number of subsystems that are involved in this can
help reduce the attack surface of the system. Key questions related to this
are:

• Which subsystems need to communicate with the outside world?

• How often and for what purposes (HD maps, updates, etc.) is this
communication necessary¹⁴?

• Which subsystems require updates and how often? Do they use the
same update mechanisms?

If the conceptual system architecture scores badly on these questions, the
system owner should consider that the security concept must more exten-
sively consider the case where multiple subsystems are compromised si-
multaneously.

2.6 SCALABILITY

From the perspective of the system owner, a particular implementation of
the AD Intelligence is not developed in isolation.

• Carrying over already developed systems (or components thereof)
can provide huge savings in money and time.

• In addition, most OEMs aim to address different market segments
and are therefore interested in multiple (and hopefully scalable) of-
fering levels. These can range from legally required NCAP functiona-
lity to premium AD or even driverless functions (e.g., MaaS / robota-
xis).

We consider both of these as parts of a scalability attribute, for which we
define two evaluation criteria.

¹⁴ This may depend on the use case and ODD, and may also change over time.

54 www.the-autonomous.com

2.6.1 SCALABILITY TOWARDS HIGHER AVAILABILITY

AD features classified as SAE Level 4 and above, which are the scope of
the Safety & Architecture Working Group, can vary widely, implying vastly
different availability goals. For a Highway Pilot feature, remaining availa-
ble for tens of seconds and coming to a controlled stop is considered suf-
ficient. However, a fully driverless vehicle may require some limp-home
functionality, i.e., continuing driving for dozens of minutes up to hours. In
the ideal case, the conceptual system architecture can be scaled depen-
ding on the availability (or integrity) levels required by a particular use
case. Key questions related to this are:

• Does the architecture support higher availability goals than what is
necessary for the reference AD use case, e.g., for driverless use
cases?

• Which subsystems would be added to achieve this?

If the conceptual system architecture scores badly on these questions, the
system owner should consider that it may be difficult to re-use it for more
elaborate AD use cases at a later point in time. It may then be necessary
to switch to a different conceptual system architecture.

2.6.2 SCALABILITY TOWARDS DIFFERENT OFFERING LEVELS

If multiple price segments or offering levels have to be addressed, it is
highly advantageous from a cost perspective to develop all such systems
jointly. Higher offering levels (offering AD features) can then be develo-
ped as extensions of lower ones (e.g., ADAS features) or vice versa. Such
systems may even be similar from a functionality perspective (e.g., both
performing highway driving with lane changes at up to 130 km/h) and
only differ from an integrity and availability perspective (e.g., requiring
supervision from an attentive driver or not). Key questions related to this
are:

• Does the architecture support reusing ADAS (with minor modificati-
ons) as a subsystem (role and provided functionality)?

• Which subsystems are specific to SAE L3/L4 use cases?

If the conceptual system architecture scores badly on these questions, the
system owner should consider that this may entail higher development
costs.

55www.the-autonomous.com

2.7 SIMPLICITY

While we do not consider physical implementation options as part of the
Safety & Architecture Working Group, some aspects of conceptual system
architectures have a pronounced – though indirect – impact on this.
Complex architectures with tightly coupled subsystems are generally har-
der to implement, validate, and verify. Ideally, architectures should be suf-
ficiently simple such that they can be easily understood, and their subsys-
tems can be developed and validated independently of each other. The
latter is particularly important as testing a black box system to the requi-
red failure rates for AD is nigh impossible (see also G1: Design faults in
large and complex monolithic systems). We define three evaluation crite-
ria related to the simplicity attribute.

2.7.1 NUMBER, COMPLEXITY, AND PERFORMANCE OF SUBSYSTEMS

As stated before, suitable conceptual system architectures should consist
of loosely coupled, cohesive subsystems (see section 2.5.1). As long as the
number of subsystems and interactions is relatively low (e.g., managea-
ble with current methodologies), emergent behavior can be more easily
prevented. The development and HW costs of each subsystem depend
more strongly on its internal complexity and performance requirements.
This can range from essentially a smart switch with minimal logic to high-
performance, AI-based subsystems for perception and planning. Key
questions related to this are:

• How many subsystems exist in the system (also implying development
and HW costs)?

• How complex are these subsystems (e.g., involving ML/AI-based ap-
proaches or algorithms that are hard to implement or calibrate pro-
perly, also implying SW implementation cost)?

• What are the performance requirements of these subsystems (also
implying power consumption and HW cost)?

If the conceptual system architecture scores badly on these questions, the
system owner should be aware that the cost to implement and manufac-
ture a corresponding physical architecture is likely to be higher.

56 www.the-autonomous.com

2.7.2 REQUIRED DIVERSITY

Ensuring that multiple subsystems do not fail simultaneously due to syste-
matic faults and/or functional insufficiencies (see also G7: Rate of safety
incidents) poses a pronounced new challenge in AD. On the level of a
conceptual system architecture, this generally requires asking for some le-
vel of diversity between subsystems. Exploiting asymmetries, e.g., by ma-
king use of Doer/Checker approaches, can make it easier to ensure this.
Key questions related to this are:

• Between which subsystems is diversity required (also implying incre-
ased development costs)?

• Are these complex and high-performance subsystems where not
many different suppliers or approaches exist?

If the conceptual system architecture scores badly on these questions, the
system owner should be aware of the additional cost and difficulty to im-
plement provably diverse SW.

2.7.3 COMPLEXITY OF VALIDATION

A well-known challenge in AD is how to demonstrate that the system is
safe enough. To do this, testing is necessary – though not sufficient. The
associated effort scales dramatically with the target failure rate of the sys-
tem or subsystem. Key questions related to this are:

• Can subsystems be validated independently from each other?

• If so, does the required validation effort decrease significantly (e.g.,
10-⁸ per hour / 100 million hours for testing of the integrated system →
10-⁶ per hour / 1 million hours for each isolated subsystem)?

• What is the complexity of ensuring the absence of correlated or com-
mon cause failures between subsystems?

If the conceptual system architecture scores badly on these questions, the
system owner should be aware that testing will pose a significant challen-
ge.

57www.the-autonomous.com

2.8 SAFETY OF THE INTENDED FUNCTIONALITY
(SOTIF)

To ensure an acceptable level of dependability for AD/ADAS systems, the
analysis of SOTIF aspects must be included in architectural design decisi-
ons from the beginning. Although the impact of SOTIF on the conceptual
architecture of ADs has not been sufficiently examined, we propose some
ideas that could help to determine whether particular architectures have
the potential to better support SOTIF.

We focus on the idea that each channel must be designed to ensure a
safe vehicle behavior in all the expected operational conditions depen-
ding on its functional responsibility (e.g., nominal, or fallback capabili-
ties). Then, the safe interaction between the different architectural ele-
ments shall be ensured for system safety. For this, dedicated components
supporting SOTIF-related tasks are required.

The analysis of the different modes of operation, ODD subsets and the in-
tended functionality of the system may lead to the addition of sensors,
components or additional channels to compensate for the functional in-
sufficiencies.

In general, modular architectures support SOTIF. This is evident for the
challenges related to ODD and triggering conditions analysis, in combi-
nation with scenario-based validation. Acceptance criteria for validation
efforts could also be defined per channel or in a more granular manner.
Additionally, SOTIF issues are expected to require regular software up-
dates (e.g., new traffic signs, extensions of the environmental model, safe-
ty case changes), which is facilitated by modular approaches.

2.8.1 SUPPORT TO ACCOMMODATE FUNCTIONAL INSUFFICIENCIES

• Does the architectural design sufficiently address the corresponding
ODD and the vehicle's driving policy (e.g., OEDR, DDT, maneuvers,
traffic rules)?

• Is the diversity of the architectural design elements sufficient to cover
all the potential triggering conditions and output insufficiencies
(e.g., the perception subsystem consists of diverse algorithms apply-
ing deep learning vs sensor fusion perception, avoidance of com-
mon cause false negatives when detecting/classifying objects)?

58 www.the-autonomous.com

• To compensate for performance limitations of the environment per-
ception sensors, the AD architectures include sets of diverse sensor
modalities (e.g., vision, lidar, radar, localization).

• Does the architecture facilitate the validation of scenarios (i.e., sce-
nario-based verification and validation from the perspective of SO-
TIF)?

If the conceptual system architecture scores badly on these questions, the
system owner should be aware that the efforts to implement functional
modifications addressing SOTIF-related risks is likely to be higher.

2.8.2 SUPPORT TO MANAGE OPERATIONAL CONDITIONS

• Does the architecture include components to monitor adequately the
ODD in different operational conditions?

• Does the architecture ensure safe usage of the driving function in all
operational conditions (e.g., control takeover, activation/deactivati-
on, degraded mode, emergency mode)?

• Does the architecture support the monitoring and handling of poten-
tial misuses (i.e., ability to prevent or detect and mitigate reasonably
foreseeable misuses)?

• Does the architecture support the data collection and monitoring of
safety performance indicators during field operation (e.g., to impro-
ve the set of known scenarios, data possibly collected in real-time)?

If the conceptual system architecture scores badly on these questions, the
system owner should be aware that mitigating risks associated with po-
tential functional insufficiencies and/or triggering conditions, including
those that are to be uncovered during operation, will likely be difficult to
achieve. This can lead to the fact that a restriction of the intended functi-
onality must be taken into consideration more than originally planned.

59www.the-autonomous.com

2.9 TABLE OF EVALUATION CRITERIA

Figure 10 illustrates the structure of the evaluation criteria. Each attribute
is split into several evaluation criteria, which in turn have several associa-
ted key questions used during the evaluation. The full set of evaluation
criteria is listed in Table 2, along with related system requirements (com-
pare section 1.3), general constraints (compare section 1.5.1), and design
principles (compare section 1.5.2).

Figure 10: Structure of relevant attributes, evaluation criteria, and key questions.

60 www.the-autonomous.com

TABLE 2: SUMMARY OF THE EVALUATION CRITERIA.

Attribute Evaluation
criterion Example observations Related

Availability

Availability of
the system

• There are no obvious single-
point faults in the architec-
ture.

• The architecture can deal
with some multi-point faults.

S1: AD Intelligence output time-
liness
S2: AD Intelligence output
availability
S3: AD Intelligence output cor-
rectness
S4: AD Intelligence output con-
sistency
G1: Design faults in large and
complex monolithic systems
G2: Single-event upsets in non-
redundant HW
G3: Testing and simulation of
very high safety-related availa-
bility of large monolithic system
G4: Specification of critical sce-
narios
D1: Fault Containment Units
D3: Diversity and redundancy
for complex subsystems
D7: Mitigation of common-cau-
se hazards

Diagnostics
scheme

• Subsystems are aware of
other subsystems’ status and
can adapt their behavior
accordingly.

S6: AD Intelligence diagnostics

Degradation
scheme

• The architecture has a defi-
ned degradation scheme.

• The failure of a single sub-
system does not immediately
lead to an emergency reacti-
on (e.g., MRM).

S2: AD Intelligence output
availability
D6: Transient and permanent
faults
D7: Mitigation of common-cau-
se hazards

Reliability
Availability of
the nominal
functionality

• Frequently occurring transient
faults do not lead to an emer-
gency reaction (e.g., MRM).

• The arbitration decisions can
be broken down into
manageable logical state-
ments.

G5: Frequent switching

D6: Transient and permanent
faults

D7: Mitigation of common-cau-
se hazards

Cybersecurity

Interactions
between
subsystems

• Subsystems only interact via
well-defined interfaces.

D1: Fault Containment Units
D5: Avoidance of emergent be-
havior

Interactions
with external
systems

• Few subsystems need to
communicate with external
systems.

• Few subsystems require fre-
quent (e.g., OTA) updates.

• Some subsystems can make
use of a different, slower up-
date mechanism (e.g., in
workshop).

61www.the-autonomous.com

Attribute Evaluation
criterion Example observations Related

Scalability

Scalability to-
wards higher
availability

• The architecture can be extended
by adding more subsystems to
achieve higher availability or inte-
grity.

Scalability
towards
different
offering levels

• Some of the subsystems are very
similar to SAE L2 ADAS systems in
functionality and could be carried
over with minor modifications.

Simplicity

Number,
complexity,
and perfor-
mance of
subsystems

• The number of subsystems is small.

• The number of complex subsys-
tems is small.

• The number of subsystems with
high computational performance
requirements is small.

D1: Fault Containment
Units
D2: Simple and complex
subsystems
D5: Avoidance of emer-
gent behavior
D7: Mitigation of com-
mon-cause hazards

Required
diversity

• Diversity is required between few
subsystems.

• Diverse subsystems perform
complementary functions (e.g.,
Doer / Checker).

• Few complex subsystems require
diversity.

S2: AD Intelligence output
availability
S3: AD Intelligence output
correctness
G6: Checks to determine
plausibility of another
subsystem
D3: Diversity and redun-
dancy for complex sub-
systems
D7: Mitigation of com-
mon-cause hazards

Complexity of
validation

• The different subsystems are loo-
sely coupled and cohesive
enough to be independently vali-
dated.

• The target failure rate of each
subsystem requires a managea-
ble testing effort.

G1: Design faults in large
and complex monolithic
systems
G3: Testing and simulati-
on of very high safety-re-
lated availability of large
monolithic system
D4: Provable correctness
for simple subsystems

Safety of the
intended
functionality

Support to
accommoda-
te functional
insufficiencies

• The diversity of the architectural
design elements (e.g., indepen-
dent sensor sets) decreases the
risk of unhandled output insuffi-
ciencies.

G1: Design faults in large
and complex monolithic
systems
G4: Specification of criti-
cal scenarios
G7: Rate of safety incidents
G8: Impact of system failure
D3: Diversity and redun-
dancy for complex sub-
systems
D4: Provable correctness
for simple subsystems
D7: Mitigation of com-
mon-cause hazards

Support to
manage ope-
rational con-
ditions

• The separation into independent
channels with specific capabili-
ties enables a high level of vehic-
le situational awareness.

S5: Perception malfuncti-
on detection
G4: Specification of criti-
cal scenarios
D7: Mitigation of com-
mon-cause hazards

62 www.the-autonomous.com

3 CANDIDATE
ARCHITECTURES
In this section, we collect and describe different proposed conceptual sys-
tem architectures that we will evaluate in section 4. We first describe the
process we used for collecting such candidate architectures based on pu-
blicly available sources and the experience of the Working Group mem-
bers (see section 3.1). Then, we identify generic underlying principles that
are shared between multiple candidate architectures (see section 3.2).
Finally, we describe the structure and behavior of each candidate archi-
tecture, where we cluster them into three major types:

1. MONOLITHIC ARCHITECTURES
(see section 3.3) present the status quo for
SAE L2 ADAS and serve as the baseline for
the evaluation.

2. SYMMETRIC ARCHITECTURES
(see section 3.4) rely on multiple channels
providing the same or similar functions, often
with some voting mechanism (see sections 3.2.1
and 3.2.2) determining which output to use.

3. ASYMMETRIC ARCHITECTURES
(see section 3.5) employ asymmetric decom-
positions to reduce the complexity of some
subsystems, e.g., via Doer / Checker (see sec-
tion 3.2.3) or Active / Hot Stand-By approa-
ches (see section 3.2.4).

For each candidate architecture, relevant references and the considered
variant are stated. If applicable, employed generic principles (see section
3.2) and design principles are listed. The structure of each conceptual
system architecture is described via static modeling, while its behavior is
described via dynamic modeling. The level of provided detail is intended
to give an understanding of the architecture, while very specific details
are shifted to the respective appendices.

63www.the-autonomous.com

3.1 COLLECTION PROCESS

In the context of AD, a variety of architectural concepts have been propo-
sed by both commercial and academic players. Many of these are meant
to address a specific topic, but do not present a complete architecture
covering all abstraction levels. Proposals regarding conceptual system
architectures can be somewhat tricky:

• Proposals from commercial players are sometimes incomplete, i.e.,
they only describe the concepts and components on a high level, but
not how they work and interact in detail.

• Proposals from academic players are sometimes challenging from a
commercial perspective, i.e., they neglect the high cost of implemen-
ting textbook redundancy and diversity.

As part of the activities of the Safety & Architecture Working Group, we
have screened proposed architectural concepts for their applicability to
the conceptual abstraction level.

• When possible, we tried to extract generic underlying principles and
cluster similar architectures.

• When necessary, we filled in missing details (from partial or very ge-
neric proposals) based on reasonable assumptions to be able to
evaluate an architecture’s behavior in certain scenarios and ultima-
tely whether system requirements can be met.

3.2 OVERVIEW OF ARCHITECTURAL DESIGN
PATTERNS

Most architectural design patterns in automotive systems come from other
safety-critical areas, such as aviation. It is questionable whether these
well-known approaches are sufficient for safe autonomous driving. In this
context, we have found that the safety concepts for AD Intelligence have
evolved in recent years. While ensuring reliability and availability through
redundancy remains the most important strategy, Level 4 AD systems re-
quire different structural elements (i.e., subsystems¹⁵), organized in a hier-
archical or distributed way for distinct safety responsibilities. We also re-
cognize that the focus of current approaches is on functional safety, while
some work is starting to include SOTIF ([30]).

¹⁵ A subsystem can refer to an element, a set of elements, or a channel. The channel we are considering
here refers to the subsystem composed of a sensor set, a perception element, and a planning element
(i.e., the first two stages of the so-called "sense, plan, act" model of autonomous driving).

64 www.the-autonomous.com

This section provides an overview of the most common redundancy-ba-
sed architectures. Although we focus on high-level safety concepts, it is
noteworthy to consider that the architectural patterns are also applicable
at lower levels of abstraction, depending on specific use cases. Further-
more, additional safety mechanisms, such as sensor fusion for the percep-
tion subsystem, are a well-established approach of AD systems to avoid
the single failure and weaknesses of any individual sensor. The main chal-
lenge is to trade off complexity and performance while ensuring that the
implemented safety mechanism covers relevant faults and functional in-
sufficiencies. Other design patterns, such as watchdogs and sanity
checks, are not explicitly mentioned as they are considered detailed im-
plementations.

3.2.1 ARBITRATION AND VOTING

With two or more inputs coming from homogeneous (symmetric) or hete-
rogeneous (asymmetric) subsystems, an element named “arbiter” acts as
the decision maker that defines the output. The design of such an arbiter
requires high safety integrity and low complexity.

There are different implementations of arbitration depending on the type
of input data, the number of available input interfaces and the voting cri-
teria. These aspects depend on the responsibility of the arbiter and are
decisive for the performance of the safety measures. Subsystem indepen-
dence (e.g., diversity in generating inputs) is fundamental to manage
common cause failures.

Majority voting can be considered a special case of arbitration.

Applicability:

• The original approach, i.e., binary inputs, odd number of subsys-
tems, and majority voting, can be considered the simplest case. Such
a simple arbiter could be used, for example, to determine whether to
enable a safety channel or path.

Subsystem 2 Arbiter (Voter)

...

Subsystem 1
output

output

65www.the-autonomous.com

• For more complex cases, such as continuous-valued signals (e.g.,
acceleration) or heterogeneous components, a more sophisticated
implementation is required. This problem is comparable to inexact
agreement.

• Some examples of arbitration criteria are plausibility checks, accep-
tance tests, risk estimation or scenario-based prioritization.

• An aspect to consider is the potentially high development costs for
the independent subsystems.

• To ensure fail-operational arbitration, multiple arbiters may be considered.

3.2.2 AGREEMENT

Redundant subsystems called “participants” interact to reach a decision,
without an arbitration component. The agreement pattern is based on a
closed loop approach and may consist of multiple rounds of information
exchange between all (available) participants.

Applicability:

• Like voting, agreement is applicable for redundant subsystems.

• Agreement mechanisms are also used for the detection and isolation
of asymmetric faults.

• Like voting, there are challenges related to the implementation of
agreement, especially those related to the type of input data (e.g.,
inexact agreement). Solutions for this can be the use of convergence
algorithms, confidence rating, approximate outputs considering a
given precision and allowed system accuracy.

• Agreement algorithms might not be viable when there are numerous
acceptable decision candidates that might differ significantly due to
the use of nondeterministic algorithms.

66 www.the-autonomous.com

3.2.3 DOER/CHECKER (OR CONTROL/MONITOR)

One subsystem, the “doer”, performs a function while another, the “checker”,
monitors it. The checker requires higher safety integrity and lower complexity
than the doer. The doer implements the nominal capabilities of the system.

There are different implementations of Doer/Checker depending on the
comparison strategy and how monitoring is performed. Additional self-
checks and cross-checks may be required to prevent single-point failure
in the system. Subsystem independence (e.g., separate hardware) is re-
quired for high reliability and availability.

Applicability:

• This approach is useful if an appropriate simpler monitoring compo-
nent is feasible.

• Some factors such as time lags and computational accuracy might af-
fect the performance of the monitoring function.

• The original doer/checker pattern, as shown in the figure, is only ap-
plicable to fail-safe systems.

3.2.4 ACTIVE AND HOT STAND-BY (OR DUPLEX PATTERN)

Two homogeneous or heterogeneous subsystems operate continuously in
parallel while only one of them is active at any given time. A fault detecti-
on mechanism acts as a switch between the subsystems. The fault detecti-
on mechanism requires redundancy (e.g., cross-checking) to avoid sin-
gle-point failures.

Arbiter (Switch)

Hot-Standby

Active
output

output

Arbiter (Decider)

Checker

Doer
output

yes/no

67www.the-autonomous.com

The component acting as comparator and fault detector shall be desig-
ned carefully to ensure high fault coverage. Some methods used to iden-
tify the faulty subsystem are acceptance test and hardware testing (for
details, see [31]).

Related alternatives are:

• Warm Stand-By: the reserve subsystem runs in idle state, and

• Cold Stand-By: the reserve subsystem is normally off.

Applicability:

• This approach is suitable for functionalities with strict time cons-
traints.

• The decision between hot, warm, or cold redundancy depends on
the required safety level, response time, and power consumption.

3.3 MONOLITHIC ARCHITECTURES
3.3.1 SINGLE-CHANNEL ARCHITECTURE

In 2015, Audi gave some insights into their then-next generation HW and
SW platform [32], intended to cover more complex ADAS use cases and a
novel SAE L3 Traffic Jam Pilot AD use case¹⁶. While the described architec-
ture was designed with a different use case in mind than outlined in Sec-
tion 1.1, it can remain relevant to make the differences from other architec-
tures more apparent.

3.3.1.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
Historically, most ADAS were a collection of dedicated ECUs and sensors
for every individual function or use case, e.g., Adaptive Cruise Control
(ACC), Light Assistant, Parking Assistant, Top View, etc. As more such sys-
tems were added to vehicles, cost and complexity scaled poorly and the
performance of the provided functions remained limited, since fusing the
information from the distributed sensors proved to be difficult.

Starting around 2015, the leading players in the automotive industry star-
ted working on more centralized platforms that decoupled specific sen-
sors from specific ADAS functions by introducing a centralized sensor data

¹⁶ This use case was intended to support hands-off / feet-off / eyes-off driving in traffic jam scenarios (up
to 60 km/h) on highways. In case of a failure of the system, the driver was supposed to take over within
~10 seconds.

68 www.the-autonomous.com

fusion layer in-between (see Figure 11), with the intention to gain several
benefits:

• Multiple control units could be integrated into one unit and their HW
resources shared.

• A more modular architecture (due to decoupling of SW from HW)
could allow updating functions or deploying additional ones over
the lifetime of the vehicle.

• The central environment model could reduce redundancies and
make consistent information available to many applications.

• Improved recognition of the vehicle’s surroundings and a more de-
tailed environment model gained through multi-sensor data fusion
could support more complex SAE L2 (ADAS) use cases and even no-
vel SAE L3 use cases.

At the time, developing an integrated HW and SW platform capable of
hosting a large number of applications with widely varying computatio-
nal needs (e.g., FPGA or GPU) was challenging. Table 3 shows an over-
view of the different HW components in the Audi zFAS system and the hos-
ted functions.

Figure 11: Centralized sensor data fusion layer in the Audi zFAS platform [33].

69www.the-autonomous.com

TABLE 3: HW COMPONENTS IN THE AUDI ZFAS PLATFORM [33].

3.3.1.2 STRUCTURAL DESCRIPTION
The proposed architecture is monolithic, i.e., it only consists of a single
FCU with interfaces identical to the external interfaces of the AD Intelli-
gence.

3.3.1.3 BEHAVIORAL DESCRIPTION
Due to its monolithic nature, the behavior of the system is straightforward:

• It processes received sensor data into a consistent environment model.

• It then periodically generates trajectories and corresponding actua-
tor setpoints.

• These setpoints are then sent to the Actuator System.

• If an internal fault is detected, the system remains silent.

Due to the underlying use case of a traffic jam pilot (low speed and a res-
trained environment), the safety requirements are noticeably different
from most AD use cases with respect to integrity (i.e., complex functionality
does not need to reach the highest ASIL) and availability (i.e., the system
does not need to provide complex fallback functionality in case of a fault).

3.3.1.4 INSIGHTS INTO TESLA’S FSD SYSTEM
Tesla’s “Full Self Driving” (FSD) seems to be a more recent implementation
of a single-channel architecture. Despite the suggestive label and marke-
ting as a highly autonomous system, FSD and its precursors “Autopilot”
and “Enhanced Autopilot” are formally sold as SAE L2 systems, where the
driver needs to supervise and be ready to take control of the vehicle at any
time. While the Autopilot function is meant as a (semi-)autonomous high-
way driving system, the FSD system aims to include urban roads. Technical

Automotive-qualified embedded micro-
controller

• Various functions (up to ASIL D)

• Interface to the rest of the vehicle

FPGA
• Sensor fusion

• Sensor processing

Image processing SoC

• Image processing

• Computer vision

• Driver monitoring

Front camera image processing SoC
• Computer vision

• Emergency braking

70 www.the-autonomous.com

information is made available by Tesla in the course of yearly “AI Days”,
e.g., [34] and shows in considerable detail that the system is (at the time
of writing) purely camera-based and composed of multiple complex ma-
chine learning modules that are specialized in various elements of the
world model (objects, lanes, …). A single, common planning module on
top is responsible for computing the actual vehicle trajectory and control-
ling the vehicle motion. There is no mention of any functionally redundant
blocks like supervision, or of fault-tolerance mechanisms like comparisons
or voting on the SW architecture level.

With the introduction of the so-called “HW3” generation of the central dri-
ving computer, Tesla deployed the core SOC twice, in a parallel redun-
dant fashion, stating that if either one were to fail, the redundant compo-
nent would take over. It remains unclear, however, if that redundancy is
exploited on a functional and logical architecture level – quite likely the
same single-channel FSD stack is essentially intended to be deployed twi-
ce, and the redundant SOC is meant to just address random faults in the
underlying electronic components, like core SOC failures and power sup-
ply outages, but not functional deficiencies or systematic implementation
faults. Therefore, the architecture may still be considered as monolithic
single channel logically.

In unconfirmed information, [35] states that ultimately redundancy has
been dismissed in HW3 and the second SOC used to increase computati-
onal performance instead. With a new “HW4” generation, redundancy of
SOCs would be introduced again and augmented by radars (which were
dismissed as unnecessary earlier). This might open up the potential of true
SAE L3 and higher operation to Tesla and could also indicate a step away
from the apparent single-channel architecture.

3.4 SYMMETRIC ARCHITECTURES
3.4.1 MAJORITY VOTING ARCHITECTURE

This section follows the specific variant of majority voting called “triple mo-
dular redundancy (TMR)” with a particular focus on the redundancy
aspects of the architecture. As described in [36], this type of redundancy is
commonly used in very high reliability systems such as those used in aero-
space. To the authors’ knowledge, a strict application of this architecture
in the AD domain has not yet been officially published. Still, we include it
in the report, as the voting paradigm is an obvious and tempting ap-
proach for AD systems, and its properties therefore deserve a closer look.

71www.the-autonomous.com

3.4.1.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
Triple modular redundancy is a specific implementation of “N-Modular
Redundancy” where you have three identical channels that produce re-
sults that are fed to a “voter”. The voter is responsible for looking at the
results from the three channels and deciding which result is likely to be
correct.

• The voter operates based on the assumption that common mode fai-
lures are much less likely than single-event errors. This implies that
the majority is correct. Therefore, if the voter observes two identical
results and one dissimilar result, it will assume that the dissimilar re-
sult came about through a failure and the two identical results are in
fact correct.

• In the strictest sense, only identical results can form such a majority.
This can be relaxed to some extent to “sufficiently similar” results via
inexact voting approaches.

3.4.1.2 STRUCTURAL DESCRIPTION
The proposed conceptual architecture consists of four FCUs:

• Three independent channels computing results¹⁷.
• The independent voter responsible for deciding which is the correct

result¹⁸.

The interfaces to the three channels are identical, and each output of the
channel is fed to the voter. The results of the voter are then fed to the actu-
ating systems of the vehicle.

3.4.1.3 BEHAVIORAL DESCRIPTION
In the proposed architecture, each channel would contain all functions
required to implement the entire AD system. This would include taking the
sensors of the vehicle as input, generating an environment model, trajec-
tories, and actuator setpoints, checking whether the vehicle is operating
inside the ODD, etc. Like the linear / monolithic architecture, each channel
would:

¹⁷ For exact voting, these channels will most likely need to be implemented in an identical way unless the
provided functionality is very simple and straightforward. Even then, replica indeterminism may cause
issues. For inexact voting, some degree of diversity (to prevent common cause faults) may be allowed.
¹⁸ Some advanced versions of TMR (e.g., triple-triple) include multiple voters, but we do not consider
this here.

72 www.the-autonomous.com

• Process received sensor data into a consistent environment model.

• Periodically generate trajectories and corresponding actuator set-
points.

• Send these setpoints to the voter (or ultimately to the Actuator Sys-
tem).

• Remain silent if an internal fault within the channel is detected.

The behavior of the voter can be summarized in the below table of states.
The table has been distilled into the minimum number of unique states
and does not include every permutation.

From this table we can observe the simplicity in the voter’s design. There
is a minimum number of possible combinations the voter must consider.
We also see some of the majority voting architecture’s major flaws. The
design of majority voting relies heavily on the assumption that the failure
modes are unique and that common mode failures are unlikely. It is also
possible for the voter to get into a state where no decision can be made if
each of the identical channels produces a different result. Concretely,
while simple problems may have a single “best / correct” solution, more
complicated or even complex problems may have multiple “good” soluti-
ons, which can differ fundamentally (e.g., evading left or right). This may
be more pronounced in the automotive domain (busy road) than the ae-
rospace domain (empty sky). See quote from [26] in the next paragraph.
This would need to be treated as a fault scenario and a predetermined
recovery action would take place.

Quote from [26]: Provably correct Decision System: Whenever two inde-
pendent redundant subsystems are involved in a decision in a complex
environment there is the possibility of two different correct outcomes. The
introduction of a third subsystem will only mask a single fault if the invol-
ved systems are replica determinate [37].

Channel A result Channel B result Channel C result Voter decision

Result A Result A Result A Result A

Result A Result A Result B Result A

Result A Result B Result C No decision – fault

73www.the-autonomous.com

3.4.2 CROSS-CHECKING PAIR ARCHITECTURE

At the time of creation of this document, the experts of the working group
were aware of a symmetric approach proposed by one company specia-
lized in automated driving [38]. The group wanted to investigate this ap-
proach further, but did not find public information. The group decided to
keep this short section so that the investigation could potentially be conti-
nued at a later point in time.

3.5 ASYMMETRIC ARCHITECTURES
3.5.1 CHANNEL-WISE DOER / CHECKER / FALLBACK (DCF) ARCHI-
TECTURE

This section discusses the architecture proposed by Kopetz [26], which can
be considered a specific combination of the Doer / Checker and Active /
Hot Stand-By (see section 3.2) approaches for decomposition with respect
to integrity and availability, respectively. In this case, the decomposition is
done for entire processing channels. Involved design principles and their
respective intentions are:

• Minimizing interactions between the different subsystems (in this case
entire processing channels) is intended to reduce complexity and to pre-
vent emergent behavior (see also: Avoidance of emergent behavior).

• Employing a Time-Triggered Architecture (TTA) is intended to reduce
ambiguity between late vs. missing messages and to prevent the for-
mation of mutually inconsistent time domains.

3.5.1.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
The channel-wise Doer / Checker / Fallback architecture is based on a
combination of the Doer / Checker approach (for decomposition with re-
spect to integrity) and the Active / Hot Stand-By approach (for decompo-
sition with respect to availability). These are outlined in sections 3.2.3 and
3.2.4, respectively.

The conceptual architecture of the variant proposed by Kopetz is based
on a Time-Triggered Architecture (TTA), i.e., scheduled task execution
and communication across all subsystems. This simplifies the Doer / Che-
cker and Active / Hot Stand-By decompositions:

• Missing and delayed messages between channels are treated the
same way.

• Latencies due to communication between channels and the redun-
dancy management can be bounded and reduced.

74 www.the-autonomous.com

As described in [26], the proposed conceptual architecture also requires
sufficient independence between channels to prevent common cause
faults¹⁹. This may necessitate some diversity in HW and SW implementati-
ons (to be further discussed in Section 5).

3.5.1.2 STRUCTURAL DESCRIPTION
The proposed conceptual system architecture consists of four subsystems
(see Figure 12), namely:

1. The Computer-Controlled Driving Subsystem (CCDSS) controls the
vehicle under nominal conditions, i.e., it is similar to some SAE L2 sys-
tems[26]²⁰. It periodically produces trajectories (e.g., timed waypo-
ints) and actuator setpoints (e.g., desired acceleration / deceleration
and curvature values for steering, powertrain, and brakes) and
transmits these to the MSS and the FTDSS.

2. The Monitoring Subsystem (MSS) detects unsafe trajectories produ-
ced by the CCDSS, whether nominal conditions prevail, and whether
the CEHSS is still alive.

3. The Critical Event-Handling Subsystem (CEHSS) controls the vehicle
under off-nominal conditions. It only aims to bring the vehicle into a
safe state, i.e., to execute an MRM, but must be able to do that even
after an ODD exit. It periodically produces trajectories and actuator
setpoints and transmits these to the FTDSS.

4. The Fault-Tolerant Decision Subsystem (FTDSS) decides which set-
points are forwarded to the Actuator System. It consists of two identi-
cal instances to achieve fault tolerance.

A more detailed structural description of the subsystems is given in Appen-
dix B: Detailed description of the channel-wise DCF architecture.

¹⁹ For complex subsystems (i.e., the CCDSS, MSS, and CEHSS described in the subsequent section) this
may necessitate diverse SW implementations. For sufficiently simple subsystems (i.e., the FTDSS) with
fully verifiable SW, no diversity is necessary.
²⁰ The other subsystems effectively take over the tasks performed by a human driver in an SAE L2 system
and are collectively called Safety Assurance Subsystem in [26].

75www.the-autonomous.com

Figure 12: Block diagram of the channel-wise Doer / Checker / Fallback conceptual architecture. Main
information flow is indicated by gray arrows, supplementary information flow by green arrows.

3.5.1.3 BEHAVIORAL DESCRIPTION
Table 4 describes the behavior of each of the subsystems in more detail.
A corresponding activity diagram for the AD Intelligence is shown in Figu-
re 13 (showing the time-driven tasks with the common main cycle time of
the AD Intelligence in the fault-free case). Consensus in the Actuator Sys-
tem (compare: AD Intelligence output consistency) is straightforward:
actuators follow the received setpoints with the higher priority, i.e., they
prefer CCDSS setpoints over CEHSS setpoints.

TABLE 4: BEHAVIOR OF THE SUBSYSTEMS OF THE CHANNEL-WISE DOER / CHECKER /
FALLBACK ARCHITECTURE.

Subsystem Behavior

CCDSS

• Produces trajectories and actuator setpoints (ActuatorData) for nomi-
nal conditions.

• Sends ActuatorData to MSS and FTDSS.

• Goes into degraded mode (MRM only) if system state demands it (e.g., if
CEHSS is faulty).

CEHSS
• Produces trajectories and actuator setpoints (ActuatorData) for off-nomi-

nal conditions (MRM only).

• Sends ActuatorData to MSS and FTDSS.

MSS

• Validates trajectories from CCDSS (safe, same as received by FTDSS).

• Validates trajectories from CEHSS (safe, same as received by FTDSS).

• Sends ValidationResult to FTDSS and MSS.

FTDSS

• Forwards CCDSS and CEHSS ActuatorData back to MSS.

• Selects CCDSS or CEHSS ActuatorData depending on ValidationResult.

• Sends ActuatorData to Actuator System.

76 www.the-autonomous.com

For all four subsystems of the AD Intelligence, task execution and commu-
nication are based on a time-triggered schedule. If a message is not re-
ceived in the planned time slot (and has the correct iteration counter), it
counts the same as if it hadn’t been received at all or if it had been recei-
ved in a corrupted state (e.g., with an invalid checksum).

Transient faults in one of the complex subsystems can occur quite fre-
quently, so the FTDSS is constructed to allow rapid back-and-forth swit-
ching if necessary²¹. However, unduly frequent transient faults are consi-
dered indicative of an underlying problem and cause the CCDSS to go
into a degraded mode (see also G5: Frequent switching).

Figure 13: Sequence diagram of the channel-wise Doer / Checker / Fallback architecture
in the fault-free case.

A more detailed behavioral description of the subsystems is given in Ap-
pendix B: Detailed description of the channel-wise DCF architecture.

²¹ If transient faults (e.g., erroneous object detections) are of very short duration, e.g., a low single-digit
number of frames / iterations, the FTDSS will switch to the CEHSS for just those few frames and back to
the CCDSS as soon as it recovers. Though this may occur relatively often, it is not necessarily noticeable
to the passengers.

77www.the-autonomous.com

3.5.1.4 RELATED EXAMPLES: BMW SCALABLE AV PLATFORM
ARCHITECTURE
In 2020, BMW unveiled some details on its scalable AV platform architec-
ture [39] [40], intended for SAE L3 AD features such as a Highway Pilot
system similar to the one outlined in section 1.1 - Reference AD use case.
The published materials include an overview of the planned HW archi-
tectures for different offering levels for the then-planned SOP 2021 (see
Figure 14), as well as a conceptual system architecture for the SAE L3 sys-
tem, dubbed hPAD (see Figure 15).

Based on the structural description in these materials, the conceptual ar-
chitecture proposed by BMW shares similarities with the channel-wise
Doer / Checker / Fallback architecture. Going by the depicted subsystems
and high-level functional blocks, the “MAIN” channel appears similar to
the “Doer”, the “SAFE” channel similar to the “Checker”, and the “SAFE fail-
degraded” channel similar to the “Fallback”. However, the “SAFE” channel
also seems to produce trajectories and some cross-checking between
“MAIN” and “SAFE” appears to occur, as well.

As the published behavioral description is incomplete, we decided not to
include this candidate conceptual system architecture in our evaluation.
This avoids proceeding based on speculation and assumption.

Figure 14: Planned HW architectures for different offering levels as proposed by BMW [40].

78 www.the-autonomous.com

Figure 15: Conceptual architecture proposed by BMW for an SAE L3 system [39].

3.5.2 LAYER-WISE DOER / CHECKER / FALLBACK ARCHITECTURE

In [41], a multi-channel approach combined with the doer/checker pat-
tern is presented in a patent as a safety architecture for AD. This section
summarizes the most relevant aspects of this invention.

3.5.2.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
Doer / Checker pairs are used as the main architectural pattern. The pri-
mary Doer/Checker pair acts during normal mode, and a secondary
Doer/Checker pair provides a degraded mode of operation in case the
primary pair fails. Additionally, the arbiter “Priority Selector” determines
the output to be sent to the actuators (see Figure 16).

79www.the-autonomous.com

Figure 16: Generalization of the Layer-wise Doer / Checker / Fallback architecture (figure taken from [41])

3.5.2.2 STRUCTURAL DESCRIPTION
The pattern shown in Figure 16 can be repeated for different layers or sta-
ges, as shown in Figure 17 for planning and trajectory execution.

The Safing channel (i.e., the secondary Doer/Checker pair) is more ela-
borate than the Primary one. It includes a “Permissive Envelope” signal,
which indicates a reference used to validate the Primary output. For ex-
ample, the safing trajectory executor unit may generate a permissive en-
velope that specifies a maximum acceleration rate. The Safing Safety
Gate not only produces the Permissive Envelope but also evaluates whe-
ther it is appropriate.

The Primary and Safing Units used to generate outputs in both channels
(i.e., the doers) may have low integrity levels and may each fail arbitrarily.
The two “safety gate” components (i.e., the checkers) are responsible for
checking the outputs of the Primary and Safing Units. They are high-inte-
grity components, but they fail silently if these outputs are unsafe.

The Priority Selector must continue to operate in the presence of failures to
deliver either the Primary or Safing output. The Priority Selector may fail
silently so long as that failure triggers an emergency stop. This component

80 www.the-autonomous.com

is simpler than the safety gates, so that a great deal of effort can be spent
on its verification to achieve the required high level of integrity.

The optional “overlay” channel can be used as an additional fallback me-
chanism for testing purposes.

3.5.2.3 BEHAVIORAL DESCRIPTION
Various implementation alternatives are mentioned in the patent (e.g.,
time-triggered vs. event-triggered architecture). Depending on the
choice, the system will behave differently. But in principle, the following
applies:

• If an unhandled failure occurs in either the Primary or the Safing
Unit, the architecture remains operational and continues to meet the
safety goals by means of the corresponding Safety Gates.

• If both the Primary Unit and the Safing Unit fail, the system remains
safe by recovering actions performed by the downstream stages
(e.g., executing an emergency stop).

• In a cyclic (i.e., periodic, deterministic) way, the checker of the fall-
back channel (i.e., the Safing Safety Gate) buffers a safe trajectory
and validates it against the current operational situation. If the Sa-
fing Unit for the planning stage malfunctions, the last safe trajectory
is used before the vehicle comes to a stop.

• If the Safing Safety Gate for the planning stage fails, both Primary
and Safing outputs are inhibited. The downstream stage gets no in-
puts, and thus sends no outputs, which causes the execution of the
last safe trajectory.

• If the Safing Safety Gate for the trajectory execution stage fails, both
Primary and Safing output are inhibited, which causes the Priority
Selector to execute an emergency stop.

81www.the-autonomous.com

Figure 17: Architecture of a prototype applying Layer-wise Doer / Checker / Fallback
(figure taken from [41])

3.5.3 DISTRIBUTED SAFETY MECHANISM ARCHITECTURE

This section discusses the Distributed Safety Mechanism (DSM) architec-
ture proposed in [42] [43]²², which can be considered a distributed variant
of the Doer / Checker / Fallback approach.

3.5.3.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
The DSM architecture has three channels:

• The nominal channel, consisting of the function (FUN) controlled by
one or more sensor and function safety monitors (SFM).

• The emergency channel, which is controlled by one or more control-
ler safety mechanisms (CSM).

• The safety channel, which is controlled by the vehicle safety mecha-
nism (VSM).

²² An open-access version of this paper is available at https://arxiv.org/ftp/arxiv/papers/
2011/2011.00892.pdf

82 www.the-autonomous.com

Compared with the Channel-wise Doer / Checker / Fallback (DCF) archi-
tecture variant proposed by Kopetz (see 3.5.1), there is a rough correspon-
dence between:

• FUN and CCDSS,

• SFM and MSS,

• VSM and CEHSS.

However, the redundancy management itself is different: whereas in the
Kopetz variant there is a smart switch (FTDSS), in the DSM all subsystems
apart from the controlling subsystem are silenced.

Another relevant difference to the Kopetz variant is that the CSM supports
the additional emergency stop mode as a further fallback layer, in which
no sensors are used, i.e., a braking within the latest available trajectory
evaluated as safe takes place. Alternatively, this level can also be imple-
mented in another way, e.g., on the actuator-ECU side.

The DSM is in fact able to deal with some combinations of multiple faulty
components due to a decentralized monitoring and response. No redun-
dant components (like FTDSS) are required, but a strong safety responsi-
bility is assigned to the system level.

In the formally verified model presented in [43], it is assumed that a distri-
buted protocol allows the communication of the actuator setpoints of one
and only one of the channels, depending on the current system state. Five
systems states, each of them representing an operating mode (i.e., nomi-
nal, detour, comfort setup, safe stop, and emergency stop) were conside-
red for the DSM architecture.

Figure 18 shows the degradation concept defined for the DSM behavior
that covers the different system states and fault-triggered transitions. For
the nominal mode, the function (FUN) controls the vehicle with high sys-
tem availability and resilience (i.e., fault tolerance). The DSM aims to in-
crease resilience to multi-point faults via a multi-layered monitoring con-
cept.

83www.the-autonomous.com

Figure 18: Degradation concept for the DSM presented in [43]

Regarding the redundancy and diversity aspect, the DSM architecture re-
lies on redundant communication networks (primary and secondary
ones). Additionally, in contrast to the nominal channel, the safety channel
implements the AD function using simpler algorithms and data coming
from fewer safety sensors.

A key design principle of the DSM is the highly scalable architecture due to
the separation of concerns and the distributed monitoring approach. Inspi-
red by the E-GAS layered monitoring concept [44], it includes safety monito-
ring components at function, controller, and vehicle levels. With this proper-
ty, the nominal channel can be easily extended to add more functionality or
performance features, without affecting considerably the rest of the system.

High reliability and determinism are required for the system-level distribu-
ted communication protocol to support the safety mechanisms.

84 www.the-autonomous.com

3.5.3.2 STRUCTURAL DESCRIPTION
The DSM architecture consists of 3 safety monitor types. There is a clear
separation of safety concerns defined by specific responsibilities and as-
sociated fault modes for each of these monitors. Table 5 summarizes the
most relevant characteristics and some implementation details given in
the paper.

Note that the CSM and the VSM are cross-checking each other (i.e., chal-
lenge-response protocol), and therefore additional safety mechanisms at
the communication protocol level are required.

TABLE 5: SAFETY MONITORS OF THE DSM ARCHITECTURE

Monitor Responsibility Safety
Integrity Characteristics

Sensor and
Function Monitor
(SFM)

Safety of AD functions
(e.g., SOTIF)

Low
(e.g.,
ASIL B)

• Monitors the status of the
function FUN.

• Can act as an ODD checker.

• Runs on the performance
cores of the function con-
trollers

Controller Safety
Mechanism
(CSM)

Safety of the function
controller, hardware,
and platform software
(hypervisor, OS, firm-
ware)

Medium
(e.g.,
ASIL C)

• Monitors all the function
controllers and the VSM
layer.

• It has access to the primary
network channel and can
send control commands to
the vehicle actuators (de-
tour or emergency stop).

• Can compare channels’
outputs to identify inconsis-
tencies between the nomi-
nal and safety channels.

• Runs on the safety cores of
the function controllers.

Vehicle Safety
Mechanism
(VSM)

Vehicle safety, inclu-
ding monitoring of data
and power networks’
integrity

High
(e.g.,
ASIL D)

• Monitors the CSM, the safe-
ty sensor data, and the two
communication networks.

• Can maneuver the vehicle
via the secondary network,
using the safety sensor data
(comfort or safe stop).

• Runs on a separate safety
controller.

• Fails silently.

85www.the-autonomous.com

Figure 19 shows a simplification of the structure and the most relevant
data flows of the DSM architecture. As can be seen, the architecture inclu-
des a dedicated set of sensors for the safety channel (VSM controlling the
vehicle) which is required for a safety maneuver (i.e., comfort or safe stop
operating modes).

There are interfaces playing a key role for detecting and controlling faulty
component behavior. For example, in case of a fault in the function moni-
tor (SFM), the CSM triggers a turn-off of the function and reports this to the
VSM to enter the comfort stop mode. Additionally, for the mode change
from nominal to detour (see Figure 19), if the VSM fails, the CSM takes over
the control of the vehicle.

Figure 19: High-level architectural view of the DSM. The Actuators receive one of three possible signals,
depending on the current system state.

86 www.the-autonomous.com

3.5.3.3 BEHAVIORAL DESCRIPTION
Besides the degradation concept mentioned above, exemplary sequence
diagrams presented in [43] describe the expected behavior of the DSM
architecture (see Figure 20 and Figure 21).

Note that the safety monitors are performing different monitoring tasks at
the same time. During fault-free nominal mode, the VSM runs simulta-
neously in the redundant safety channel processing the safety sensors wi-
thout sending any control command to the actuators. The FUN compo-
nent is controlling the vehicle. The CSM and the VSM monitors cross-check
each other through the primary network using a challenge-response pro-
tocol.

Once a fault has been detected, the system activates a degraded opera-
tion mode. In Figure 21, an extreme case is illustrated. First, a sensor of the
nominal channel and the SFM fail, triggering the activation of the safety
channel for a comfort stop. But then, the VSM (i.e., the safety channel) is
also failing. As a result, the CSM (i.e., the emergency channel) sends bra-
king commands to the vehicle actuators to stop the vehicle as quickly as
possible without using any sensor data.

Figure 20: Sequence diagram depicted in [43] of the DSM in nominal mode.

87www.the-autonomous.com

Figure 21: Sequence diagram depicted in [43] of the DSM in case of multiple faulty components.

88 www.the-autonomous.com

4 ARCHITECTURE
EVALUATION
4.1 EVALUATION PROCESS

Section 3 presented architectures that strive to be practical solutions to
the question of how, conceptually, an automated driving architecture
should be designed. The architectures are not limited to a specific use
case of automated driving, and for the most part they do not explicitly tar-
get a specific design criterion, like those described in section 2, although
without doubt the safety and availability of the ADI was a key considera-
tion in the design of most candidate architectures.

In this section we seek to describe the merits or potential drawbacks each
architecture might show with respect to the evaluation criteria. To form an
unbiased basis for the evaluation, we first start with a generic evaluation
of each architecture in section 4.2, by listing a number of observations
related to each criterion, i.e., properties of each architecture perceived by
the Safety and Architecture Working Group team and (if not obvious) their
significance for the specific criterion.

As the second step, we give the concrete evaluation of the architectures
under the defined reference use case of an SAE L4 Highway Pilot function
in section 4.3. To this end, we evaluate the significance of each criterion
for that use case – as some will be must-haves for the conceptual architec-
ture, while others might be of lesser significance or merely nice to have.
Next, we directly compare the architectures, considering the observed
properties from the generic evaluation and inferring merits or weaknesses
with respect to each evaluation criterion, and finally ranking them under
the criterion.

While some findings may be of principle nature and not easy to overcome,
for others the conceptual nature of the architectures and the high level of
their descriptions may leave room to define countermeasures against
weaknesses in a further, more detailed design step. Also, depending on
the particular use case and environment, the relative significance of the
evaluation criteria may change, and criteria might be modified and/or
added. It is therefore important to emphasize that the evaluation that we
provide is not intended as an absolute and final judgement. Rather, it may

89www.the-autonomous.com

be understood as a blueprint for the readers of this report for how to ana-
lyze an architecture, identify deficiencies, and derive improvement mea-
sures in a systematic way.

4.2 GENERIC EVALUATION
4.2.1 EVALUATION OF THE SINGLE-CHANNEL ARCHITECTURE

4.2.1.1 AVAILABILITY

Degradation scheme

Fail-silent only. In case of a fault, no complex fallback functionality is provided.

• No possibility of switching to a degraded mode which offers an MRM.

Diagnostics scheme

System remains silent when faults are detected.

• There are no degradation measures that can be triggered by the detection of
faults.

Scalability towards higher availability

Pattern does not support functional degradation.

• There are no redundant channels that can support nominal function availability.

• There are no fallback channels that can provide a DDT for achieving an MRC
(MRM).

Availability of the system

Monolithic design pattern: The ability to provide DDT in both nominal and failure conditi-
ons is dependent on availability of a single FCU with interfaces identical to the external
interfaces of the AD Intelligence.

• The lack of a redundant source of the DDT means that single-point faults can lead
to failure – and therefore the unavailability – of the entire AD intelligence.

• To mitigate (but not eliminate) the vulnerability to single-point faults, redundancy
measures within the internal implementation of the subcomponents could be att-
empted.

90 www.the-autonomous.com

4.2.1.2 RELIABILITY

4.2.1.3 CYBERSECURITY

4.2.1.4 SCALABILITY

4.2.1.5 SIMPLICITY

Interactions with external systems

Communication to external networks for updates can be expected.

• If implementation complexity becomes high to meet all functional requirements with
a single channel, it may not be possible to keep the frequency of updates low,
which in turn makes the usage of more secure update mechanisms less feasible
(OTA may be required instead).

Number, complexity, and performance of subsystems

Superficially, the pattern appears simple, but the implementation complexity could be
significant if use-case requirements are high.

• High development costs may be necessary for a single channel to offer a complex
functionality that reaches the highest possible ASIL.

Interactions between subsystems

Availability of the entire DDT is dependent on one channel.

• Lack of SW diversity results in a lack of diverse cybersecurity access paths. If the one
channel is compromised, the entire DDT is jeopardized.

Scalability towards differing offering levels

Pattern does not support re-using existing subsystems.

• It is only feasible for this pattern to contribute to scaling strategy by being an exis-
ting subsystem that can be re-used by a more elaborate architecture pattern (e.g.,
provide the fallback channel).

Availability of nominal function

A single trajectory result is generated from a single sensor fusion module and executed by
the actuator system.

• Potentially lowest base failure rate from low HW and SW complexity.

• The absence of redundant results and fallback paths makes the pattern prone to
false negatives/false positives and other functional deficiencies that cannot be
compensated for.

• The lack of fallback puts pressure on the complex functionality to reach the highest
possible ASIL.

91www.the-autonomous.com

4.2.1.6 SAFETY OF THE INTENDED FUNCTIONALITY

Support to accommodate functional insufficiencies

• A single channel responsible for all SOTIF issues appears to be impractical for L4
systems unless the ODD is very restricted.

• The monolithic nature of the single-channel pattern means that it is likely to draw its
high-performance requirement from ML-based modules, and that there is no op-
portunity for further algorithmic/functionality diversity.

• To cover all potential triggering conditions, the use of all possible sensor modalities
may be necessary to decide about the nominal trajectory. Depending on the type of
failure and the fault containment unit design, a fallback trajectory may or may not
be available. The fallback trajectory could be derived from the last known nominal
one or be predefined.

• Single-channel patterns may require more analysis and testing efforts, indepen-
dently of the use case, because of its intrinsic complexity compared with multiple-
channel approaches.

Support to manage operational conditions

• Due to the lack of redundancy and diversity, this architecture has a very limited ca-
pability to react safely to dynamic operational conditions in general.

• It is assumed that the ODD monitoring functionality is part of the single fault con-
tainment unit. Thus, if it fails, a predefined fallback trajectory or MRM must be used.
Such a fallback maneuver is used without considering the operational conditions
and not in an independent way, which can be unsafe.

Complexity of validation

There are no clearly separated subsystems in this pattern that require independent
verification.

• Potential of high HW/SW complexity increases the possible effort required for
review, test, analysis, etc.

• Absence of other channels eliminates necessity of integration verification.

Required level of diversity

There are no clearly separated subsystems in this pattern.

• Redundancy measures within the internal implementation need to be attempted to
offer the highest possible functionality.

• No independent development and integration of additional channels.

92 www.the-autonomous.com

4.2.2 EVALUATION OF THE MAJORITY VOTING (M-OO-N) ARCHI-
TECTURE

4.2.2.1 AVAILABILITY

Degradation scheme

The majority voting architecture provides for a controlled degradation of functionality un-
der fault conditions.

• If at least M channels do not produce an identical result, then the voter can either:
▪ Switch the system into its fail-safe state if available
▪ Discard the result and raise a flag to indicate an unsafe condition
▪ Choose an output based on a predefined policy

Availability of the system

The majority voting (M-oo-N) architecture consists of homogenous or heterogeneous hot
redundancy, and it continues to provide correct results until at least M modules/channels
have no fault. A channel consists of data acquisition, data processing, and output proces-
sing sub-systems. Additionally, input sensors, voter, and actuators form the complete ma-
jority voting architecture.

• The M-oo-N voting logic is used in the voter component to allow the system to pro-
vide the required functionality in the presence of random faults without losing the
input data. This ensures the availability of the system compared to single-channel
architecture.

• The common sensor and the voter could be a result for a single point of failure and
hence should be carefully designed and tested. The sensor’s and voter’s availability
is crucial in this concept and hence needs to be implemented in an ASIL D and fail-
operational way. N different sensors and/or voters could be implemented instead,
with the drawback of increased system complexity.

• The architecture is not appropriate for handling systematic faults. Since the N chan-
nels are identical and could have the same possible systematic fault, the system will
continue to work, producing invalid data. To overcome this weakness, heteroge-
neous modules that perform the same functionality could be used, with the draw-
back of increased development cost. Additionally, heterogeneous sensors and mo-
dules will result in potentially different (but each correct) outputs that cannot easily
be voted on. This is probably unavoidable even with identical sensors, as already
different mounting positions will lead to slightly different world perceptions.

93www.the-autonomous.com

4.2.2.2 RELIABILITY

4.2.2.3 CYBERSECURITY

Interactions with external systems

It is expected that this architecture will require communication outside of the system. All
subsystems are likely to require regular updates. As a result, the system would likely be
connected to a network to perform these updates.

• The voter, sensors and actuators are simple and likely to require less frequent up-
dates, which may thus use more secure update mechanisms.

• The redundant N channels are complex and likely to require updates to fix defects
or to install improved functionality, which are thus likely to use OTA. Use of OTA pro-
vides an exposed attack surface for gaining remote access to the system.

Interactions between subsystems

This architecture requires low amounts of data to be exchanged between channels.

• The channels are independent of each other. This can make it harder to corrupt
multiple channels after an attack on one of them. A security incident can only occur
if there are multiple attacks on different channels. The voter implementation is sim-
ple and reliable and is thus assumed to be harder to attack.

• Since the N channels are identical, a known implementation vulnerability could be
exploited in all channels. To overcome this weakness, diverse modules that perform
the same functionality could be used.

Availability of nominal functionality

In the majority voting architecture, the voting element plays the main role since it is used
to find the correct result by performing the M-oo-N voting strategy. The voter needs to be
designed simple and fault-tolerant.

• To overcome the single point of failure in the sensor (or set of sensors), separate
ones can be used for each channel. In the case of varying response speeds of the
sensors (if applicable), this needs to be handled.

• To overcome the problem of systematic faults, a hardware diversity concept can be
used in the implementation. In this case, the possible deviation in value or time bet-
ween the correct outputs needs to be taken into consideration in the design of the
voter.

• If a homogenous implementation (same hardware as well as software) is used for
all the N modules, this leads to difficulty in handling systematic faults in all modules.

• Coincident faults in multiple channels could out-vote the correct channel. Diversity
of implementation could help reduce this risk.

94 www.the-autonomous.com

4.2.2.4 SCALABILITY

4.2.2.5 SIMPLICITY

Required level of diversity

This architecture has no subsystems requiring independent development, safety verificati-
on / validation, and integration.

• The N redundant channels are identical and use the same algorithm and the same
software. Therefore, all of these components would have the same functional requi-
rements, resulting in identical development, verification, and validation. Therefore,
the development cost is also comparable to single-channel architecture.

Scalability towards different offering levels

It may be possible to carry over components from an existing SAE L2 system.

• The architecture contains identical channels and is thus easily scalable. The reliabi-
lity of the system increases with an increased number of channels.

• The voter can be modified with easy steps to accommodate the new channels in
the voting policy.

Number, complexity, and performance of subsystems

This architecture includes a number of complex and high-performance subsystems, which
interact in a controlled manner.

• The N modules run separately in parallel, hence they have only little influence on
the executing time compared to the single-channel architecture. The voter adds a
small delay, affecting the response time from reading the input signal to generating
the control actuating signal.

• The architecture does not change the level of modifiability compared to the single-
channel architecture, i.e., if one wants to modify the functionality for the M-oo-N ar-
chitecture, the effort will be almost equivalent to modifying a simple single channel.

• The development cost is also comparable to single-channel architecture, since the
N channels are identical and use the same algorithm and the same software. If he-
terogeneous modules are used to prevent common causes, the effort will scale with
the number of channels.

• The architecture has a high recurring cost due to the use of N parallel modules. The
recurring cost is N*100% compared to the single-channel architecture.

• Due to the differences in inputs or differences in the implementation of each chan-
nel, the outputs from each channel could vary slightly even in the case of a unani-
mous decision. This requires an approximate comparison within the voter that may
be challenging to create and tune correctly.

95www.the-autonomous.com

4.2.2.6 SAFETY OF THE INTENDED FUNCTIONALITY

4.2.3 EVALUATION OF THE CHANNEL-WISE DCF ARCHITECTURE

4.2.3.1 AVAILABILITY

Support to manage operational conditions

• Very limited capability to react safely to changing operational conditions.

• Like the single-channel architecture, the majority voting approach may not be ca-
pable of adequately handling operational modes other than the nominal one.

Support to accommodate functional insufficiencies

• Due to the identical channels, there is a high risk of potential common cause false
negatives of perception or planning results.

• A majority voting approach does not contribute to addressing functional insufficien-
cies. The diversity of the different channels is the determining factor. An extended
voting approach which considers the “best” trajectory and other SOTIF-related rele-
vant outputs would be needed. In the case of sufficiently diverse channels, the reso-
lution of conflicts due to inexact voting may be a challenge.

Availability of the system

This architecture provides a good degree of fault tolerance. There is a redundant system
capable of controlling the vehicle under both nominal and failure conditions.

• CCDSS (Computer Controlled Driving Subsystem) has a redundant backup with
CEHSS (Critical Event Handling Subsystem). Fault-tolerant communication channels
are available, including a secondary set of AD and ODD sensors. FTDSS (Fault-To-
lerant Decision Subsystem) is driving the Fault-Tolerant Actuator.

• There are no obvious single points of failure.

Complexity of validation

This architecture has no diverse subsystems requiring independent verification.

• The N redundant channels are identical and use the same algorithm and the same
software. Therefore, all of these components would have the same functional requi-
rements, resulting in identical development, verification, and validation.

96 www.the-autonomous.com

4.2.3.2 RELIABILITY

4.2.3.3 CYBERSECURITY

Availability of nominal functionality

DCF relies on an evaluation of the outputs of CCDSS and safety evaluation of the resulting
trajectory in MSS. The FTDSS needs to be designed simple and fault-tolerant.

• DCF requires a minimum mix of hardware and software. The resulting architectural
footprint may result in a lower potential defect rate due to lower complexity in
CEHSS and FTDSS.

• There is an active checking approach performed by the MSS to evaluate the safety
of the actuator commands being issued to the CCDSS and resulting trajectory in
MSS, with the intent being to detect a failure of the CCDSS, allowing a failover to
occur. This checking methodology is clearly defined, but not proven. Differences
between CCDSS and MSS world model are minimized by clear time synchronization
of all sensors.

Degradation scheme

DCF provides for a controlled degradation of functionality under fault conditions.

• Degradation can occur in a controlled manner, depending on the nature of faults
detected. There are two modes of operation, the second providing a minimum level
of comfort to the passengers: Full AD mode and an emergency stop when it is no
longer safe to continue operating.

• There exists full hardware and software redundancy between the primary CCDSS,
the MSS (Monitoring Subsystem) and the CEHSS. CCDSS and CEHSS redundant sys-
tems are both fully capable of controlling the vehicle autonomously. MSS monitors
the safety of the setpoints from the CCDSS and the CEHSS via the FTDSS and reports
a failure to CCDSS and FTDSS. All subsystems would be developed to fail indepen-
dently and thus diversely. A relatively low-complexity CEHSS is capable of an imme-
diate “safety stop” or a “steady moving state” if the CCDSS fail.

Interactions between subsystems

This architecture requires low amounts of data to be exchanged between subsystems.
MSS gets the trajectory planning from CCDSS, setpoints of CEHSS via FTDSS and FTDSS
gets all actuator commands from CCDSS and CEHSS and the decision about safety from
MSS.

• CCDSS + MSS are independent of CEHSS, which can make it harder to corrupt ad-
ditional subsystems after an attack on one of those. A security incident can only oc-
cur if there are two different attacks on two of the complex subsystems (MSS,
CCDSS, CEHSS).

• FTDSS could be completely free of software or is at least a simple system with a very
low attack surface. It is the only point where a single successful attack would com-
promise the overall system.

97www.the-autonomous.com

4.2.3.4 SCALABILITY

4.2.3.5 SIMPLICITY

Scalability towards different offering levels

It may be possible to carry over components from an existing SAE L2 system.

• The CCDSS and CEHSS have similar functionality and requirements to an SAE L2
ADAS. Those components could potentially be reused in a lower-tier vehicle with
only an L2 system, resulting in some cost savings.

• The MSS and FTDSS are specific to SAE L3 or higher. These components would likely
be developed and manufactured only for the fully functional AD system.

Interactions with external systems

It is expected that this architecture will require communication outside of the system. All
subsystems beside FTDSS are likely to require regular updates. As a result, the system
would likely be connected to a network to perform these updates.

• Several subsystems (CCDSS and MSS) are highly complex and likely to require fre-
quent updates to fix defects or to install improved functionality, and are thus likely to
use OTA. Use of OTA provides an exposed attack surface for gaining remote access
to the system.

• The other subsystem CEHSS is simpler and likely to require less frequent updates,
and may thus use more secure update mechanisms.

Number, complexity, and performance of subsystems

DCF includes a number of complex and high-performance subsystems, which interact in
a controlled manner.

• The CCDSS is expected to have very high complexity and require very high perfor-
mance. The MSS is expected to have moderate complexity and high performance,
i.e., simpler than the CCDSS.

• The CEHSS is expected to have moderate complexity and low performance needs.
The FTDSS is expected to be small and of low complexity, but fault-tolerant.

• Two or three disjunct sensor sets are required. Although they may be shared partly,
this adds to the manufacturing cost and complexity and would require additional
wiring within the vehicle.

• A fault-tolerant communication network is required. Similar to the redundant sen-
sors, this also adds to the manufacturing complexity and wiring needed.

• Due to the high reliability requirements on multiple sets of sensor data inputs, some
fault monitoring would be necessary for each of them.

98 www.the-autonomous.com

4.2.3.6 SAFETY OF THE INTENDED FUNCTIONALITY

Complexity of validation

This architecture has a number of diverse subsystems requiring independent verification.

• The CCDSS, MSS, CEHSS, and the FTDSS perform different functions within the ve-
hicle. Unit test verification of each independent component within the system would
require an appropriate test harness to be developed to enable full control of inputs
to and access to outputs from each component.

• Multiple custom-built integration testing harnesses would be required to verify sub-
sets of the components as they are integrated together. The different components
would be developed in parallel and would require a staged integration testing ap-
proach. Each subsystem works as an independent fault containment unit.

• Assuming parallel development of all components (except perhaps the CCDSS and
MSS), it is likely all would perform their certification activities as SEooC. The final
functional safety concept would then need to integrate all of the different out-of-
context components and validate all of the functional safety requirements for the
completed system.

• The CEHSS and the FTDSS can be treated as SEooCs, allowing for parallel develop-
ment and largely independent validation, verification, and certification. This is likely
to significantly lower validation efforts compared to validation just on the level of
the integrated system.

• The MSS is tightly coupled to the CCDSS as it performs checks on it. This makes a
joint validation necessary.

Support to accommodate functional insufficiencies

• This architecture can support a high level of coverage of triggering conditions and
functional insufficiencies if diverse algorithmic implementation is applied.

• The CDSS, MSS, and CEHSS use their own sensors.

Required level of diversity

This architecture has a high number of diverse subsystems fostering independent develop-
ment, safety verification / validation, and integration.

• The CCDSS, MSS, and the CEHSS perform different functions within the vehicle. The
CEHSS is capable of driving fully autonomously, however it makes use of a different
set of input sensors than the CCDSS and is intended only for short-term use when
the CCDSS or MSS are failing. The CEHSS is also expected to be a somewhat sim-
pler control algorithm than the CCDSS. Most likely there would be little commonality
between the two. Therefore, all three of these components would have very diffe-
rent functional requirements, likely resulting in very diverse development, verificati-
on, and validation.

99www.the-autonomous.com

4.2.4 EVALUATION OF THE LAYER-WISE DCF ARCHITECTURE

4.2.4.1 AVAILABILITY

Availability of the system

The layer-wise DCF architecture provides a good degree of fault tolerance. There is a red-
undant channel approach which is capable of controlling the vehicle under both nominal
and failure conditions.

• A primary doer-checker pair (primary channel) controls the vehicle during normal
mode, and a secondary doer-checker pair (safing [fallback] channel) provides a
degraded mode of operation in case the primary pair fails. The Primary Unit output
is checked for its safety by the Primary Safety Gate which fails silently and inhibits
the Primary Unit output (from being sent to the Priority Selector) if the safety check is
not OK. The Priority Selector will then select the output of the Safing Unit if safe (and
thus not inhibited by the Safing Safety Gate), and otherwise perform an MSTOP that
brings the vehicle to a stop in a low-level way (e.g., braking maneuver in planned
trajectory).

• Under the consideration of the fail-silence characteristic of the Safing Safety Gate,
the worst case scenario is avoided, i.e. the case in which this gate is faulty and as a
result potentially sending erroneous permissive envelopes and at the same time er-
roneously inhibiting the Safing Unit output. Furthermore, considering the fail-opera-
tional characteristic of the Priority Selector, the Vehicle Control is the only single
point of failure in the architecture.

• The channels are required to be diverse, which excludes common cause failures
that could simultaneously affect the redundant channels.

• The sensor data of the safing channel is the input to both channels’ safety gates,
which could possibly inhibit the doer’s and fallback’s output simultaneously, resul-
ting in a less safe MSTOP (coupling factor shared information input) as per the ge-
neralized example figure.

• The primary channel and safing channel seem to have joint perception inputs as
per the system instantiation figure.

Support to manage operational conditions

• The CCDSS contains mechanisms to detect an ODD exit.

• The MSS also acts as an ODD monitor and checks the CCDSS output for violations
of the ODD-related assumptions and the prospective trajectory. There is an unresol-
ved risk that the MSS fails to recognize an unsafe trajectory, which may be reduced
with a sufficiently diverse algorithmic implementation.

• The fallback channel (CEHSS) does not consider a detailed ODD, but assumes any
drivable road condition without weather or geofence limitation.

100 www.the-autonomous.com

4.2.4.2 RELIABILITY

4.2.4.3 CYBERSECURITY

Degradation scheme

The layer-wise DCF architecture provides for a controlled degradation of functionality un-
der fault conditions.

• The Safing Planner provides a trajectory that allows a safe stop, ideally at the side
of the road. If the Safing Planner’s output itself is checked as “not safe” (in addition
to the primary planner), the Priority Selector performs an MSTOP (braking maneuver
in planned trajectory).

• There exists full hardware and software redundancy between the primary channel
and the safing channel. Both channels are able to control the vehicle in a safe way.

• If the safing channel’s safety gate crashes (fails silently), it is stated to inhibit both
channels’ output to the Priority Selector, causing an MSTOP, which is a less safe op-
tion than letting the primary channel bring the car to a safe stop.

• It is left open how the Priority Selector shall trigger an MSTOP if it fails silently.

Availability of nominal functionality

The layer-wise DCF architecture provides a check for safety of the planned trajectories as
well as a check of the trajectory execution (if architectural pattern also applied for this
specific functionality) by safety gates at the respective stage. If a fault is detected in the
primary channel, where the nominal functionality is allocated, it fails silently and is no lon-
ger considered in the arbitration algorithm of the Priority Selector.

• The safety gates have a high integrity level and false-positives are thus limited. The
availability of the nominal function depends on the reliability of the primary unit
itself and is therefore not diminished by the architectural concept.

• The safing channel produces trajectories designed to enable the vehicle to stop
quickly (still updating its world model). These trajectories will be selected by the Pri-
ority Selector if the primary channel produces or executes unsafe trajectories.

• The introduction of a permissive envelope (which we did not encounter in other ar-
chitectural candidates), qualitatively judged, might reduce reliability.

Interactions between subsystems

• The clearly separated and independent components make it harder to corrupt ad-
ditional components when one of them is attacked.

• A safety-relevant fault caused by a cybersecurity attack in the primary or safing unit
will be detected by the safety gates, which will exclude the respective channel from
arbitration performed by the Priority Selector.

• However, the high number of safety gates throughout the different layers in the pri-
mary and safing channels might pose a cybersecurity risk, as each one's fail silence
characteristic and output can be manipulated jointly - compromising overall system
safety through a successful attack to one single safety gate.

101www.the-autonomous.com

4.2.4.4 SCALABILITY

Scalability towards different offering levels

It may be possible to carry over components from an existing SAE L2 system.

• The primary units and safing units (in the respective layers) as doers have similar
functionality and requirements to an SAE L2 ADAS. There is a good chance that at
least some components of these units can be reused for SAE L2 ADAS or vice versa.

• The safety gates and the Primary Selector are only useful in SAE L3 and higher sys-
tems, i.e., automated driving systems.

Interactions with external systems

The layer-wise DCF architecture needs communication outside of the system in order to
make regular updates possible, especially for the complex primary and safing units, which
are an entry port for security attacks.

• The underlying simplex architecture provides complex subsystems (units = doers)
and safety subsystems (safety gates = checkers). Only the complex units of the re-
spective channels are expected to need regular updates that are most feasible over
the air.

• The safety gates as well as the Primary Selector and Vehicle Control are simpler
subsystems. They are expected to require less frequent updates, which make the
usage of more secure update mechanisms feasible.

102 www.the-autonomous.com

4.2.4.5 SIMPLICITY

Required level of diversity

The layer-wise DCF architecture consists of several diverse subsystems requiring indepen-
dent development, including verification and validation.

• The layer-wise DCF architecture is based on diverse sets of fail-silent doer-checker
paired functional blocks in each architectural stage requiring independent deve-
lopment with independent verification and validation.

• Each stage in the respective channels consists of a low integrity level unit and a
high integrity level safety gate checking the safety of the unit’s output. The split into
high integrity level monitoring and low integrity level intended functionality requires
a technical independence between the architectural elements that includes diversi-
ty (e.g., see preconditions for ASIL decomposition in ISO 26262). The safety gates
have different functionalities implemented compared to the units, which brings with
it different developments. However, homogenous elements and similar design ap-
proaches must be avoided for the sake of diversity.

Number, complexity, and performance of subsystems

The layer-wise DCF architecture includes complex and high-performance subsystems as
well as simple and low-performance subsystems.

• The primary units in the respective layers are expected to have high complexity and
high performance needs.

• The safing units in the respective layers are expected to have moderate complexity
and moderate performance needs.

• The safety gates in the respective channels are expected to have moderate
complexity and moderate performance needs.

• Two disjunct sensor sets are required. This increases the unit costs of the automated
driving item and its complexity.

• A fault-tolerant communication network on the sensor side is proposed, to enable
sharing of sensors and help reduce cost. As this is not a decisive nor distinctive ele-
ment of the architecture, we do not evaluate it further.

• The Primary Selector and the Vehicle Control are expected to have low complexity
and low performance needs.

• Due to the high reliability on multiple sets of sensor data inputs, some fault monito-
ring would be necessary for each of them.

• The “architectural pattern” is repeated n times through the layers of a system, which
increases the number of subsystems.

• The “basic architectural approach” is repeated n times through the layers of a sys-
tem, which decreases the complexity of subsystems at the respective stages.

103www.the-autonomous.com

4.2.4.6 SAFETY OF THE INTENDED FUNCTIONALITY

Support to accommodate functional insufficiencies

• This architecture supports a sufficiently diverse implementation to cover the safe
handling of triggering conditions and functional insufficiencies.

• The multi-channel approach not only ensures fail-degraded behavior but also pro-
motes diverse implementation.

• The layered approach showing separation of concerns facilitates analysis and im-
plementation of measures to address functional insufficiencies (e.g., limitations of
perception algorithms and outputs are handled separately from the ones related to
planning). This implies that the checkers may be simpler. This specialization also
has a positive impact on V&V effort, maintainability, and reusability, all of which
are relevant for SOTIF.

• The large number of subsystems may negatively affect the response time in critical
situations. This, in turn, can be compensated for by a faster reaction, given the sim-
pler or earlier checking.

Complexity of validation

This architecture has a number of diverse subsystems requiring independent verification.

• The units and safety gates, as well as the Primary Selector and Vehicle Control
perform different functions within the vehicle. Unit test verification of each indepen-
dent sub-system within the system would require an appropriate test harness to be
developed to enable full control of inputs to and access to outputs from each sub-
system.

• Multiple custom-built integration testing harnesses would be required to verify sub-
sets of the components as they are integrated together. The different components
would be developed in parallel and would require a staged integration testing ap-
proach. Each subsystem works as an independent fault containment unit.

• It is assumed that the doer-checker pairs (as a single element) of the primary and
safing channel as well as the Primary Selector and Vehicle Control are developed
in parallel to SEooCs. The final functional safety concept would then need to inte-
grate all of the different out-of-context components and validate all of the functio-
nal safety requirements for the completed system.

• The high number of subsystems due to the instantiation of the “architectural pattern”
at the various stages results in high integration efforts, which include integration ve-
rification.

• The high number of subsystems due to the instantiation of the “architectural pattern”
at the various stages means less complex subsystems compared to a single-layer
approach which eases the verification efforts (review, test, analysis) for the respecti-
ve subsystems and also raises the efficiency of finding anomalies.

• Due to the independence requirements between a high number of subsystems ad-
herent to the architectural pattern applied at multiple stages, a complex and chal-
lenging dependent failure analysis must be performed.

104 www.the-autonomous.com

4.2.5 EVALUATION OF THE DSM ARCHITECTURE

4.2.5.1 AVAILABILITY

Degradation scheme

DSM provides for a controlled degradation of functionality under failure conditions.

• Degradation occurs in a controlled manner, depending on the nature of faults
detected. There are five different modes of operation, each providing diminishing
levels of comfort to the passengers: Full AD mode, a “detour” mode when immedia-
te repair is needed, a “comfort stop” occurring at the next opportunity, an immedia-
te “safety stop” when the fault(s) require urgent reaction, and an emergency stop
when it is no longer safe to continue operating.

• There exists full hardware and software redundancy between the primary FUN and
the VSM. These two redundant systems are both fully capable of controlling the ve-
hicle autonomously. In addition, the CSM is capable of an emergency stop when
necessary if both the FUN and VSM fail, acting as an additional layer in the degra-
dation scheme.

Availability of the system

This architecture provides a high degree of fault tolerance. There are multiple redundant
subsystems capable of controlling the vehicle under both nominal and failure conditions.

• Each subsystem is equipped with a backup. Redundant communication channels
are available, including a secondary set of AD and ODD sensors.

• In some cases, there are dual-redundant subsystems. The CSM acts as a backup for
the VSM, which in turn acts as a backup for the FUN.

• There are no obvious single points of failure.

Diagnostics scheme

The architecture includes multiple layers of diagnostic checking.

• Continuous diagnostic checking is performed on the functional sensors, safety sen-
sors, as well as between various subsystems within the architecture.

• A continuous (cross-checking) challenge and response mechanism between the
VSM and CSM confirms that both subsystems are within their safe operational para-
meters.

Support to manage operational conditions

• A fallback pipeline (Safing Units and Gates of different stages) is included in the ar-
chitecture. It uses an independent set of sensors.

• It is assumed that at least the checkers perform the ODD monitoring functionality
and other SOTIF-related checks. No details are included in the patent regarding
this aspect.

• The checkers of the fallback channel perform buffering of the last safe output to en-
sure fail-operational (degraded) vehicle behavior.

105www.the-autonomous.com

4.2.5.2 RELIABILITY

4.2.5.3 CYBERSECURITY

Interactions between subsystems

This architecture requires significant amounts of data to be exchanged between subsys-
tems, including a high number of interactions between those subsystems.

• If a subsystem is compromised, the relatively large number of interfaces (e.g., due
to additional monitoring mechanisms) can make it easier to corrupt additional sub-
systems.

Interactions with external systems

It is expected that this architecture will require communication outside of the system. All
subsystems are likely to require regular updates. As a result, the system would likely be
connected to a network to perform these updates.

• Several subsystems (mostly the FUN and only to a lesser extent the associated SFM)
are highly complex and likely to require frequent updates to fix defects or to install
improved functionality, which are thus likely to use OTA. Use of OTA provides an ex-
posed attack surface for gaining remote access to the system.

• The other subsystems (CSM and VSM) are simpler and likely to require less frequent
updates, which may thus use more secure update mechanisms.

Availability of nominal functionality

DSM provides two subsystems capable of fully autonomous operation. The CSM compares
the outputs of the FUN and VSM, enabling the detection of failures.

• CSM subsystem performs continuous comparisons between the actuator outputs of
the FUN and VSM. This enables rapid detection of a fault in the FUN system and
immediate failover to the VSM. Such dual-redundant fully autonomous subsystems
should provide a high level of reliability.

• The active checking approach performed by the CSM is unclearly defined and may
be impractical if the asked-for agreement is too strict. Differences between FUN
and VSM actuator commands must be expected due to differences in sensor inputs
and computational algorithms. These differences may not indicate failure but rather
two possible successful decisions (e.g., veer right to avoid a pothole, versus veer left
to avoid a pothole). Being too strict in checking may result in false positives, where-
as being too lenient may result in reactions which are too slow in a true failure situa-
tion. The CSM may thus need to resort to the MRM, which reduces the availability of
the nominal functionality.

• DSM requires a complex mix of hardware and software. The resulting architectural
footprint may result in a higher potential defect rate within subsystems or in the in-
teractions between subsystems.

106 www.the-autonomous.com

4.2.5.4 SCALABILITY

4.2.5.5 SIMPLICITY

Scalability towards higher availability

This architecture appears to be extensible to achieve higher availability, e.g., for fully dri-
verless AD use cases.

• There is the possibility to add more VMs (adding more FUN and SFM modules) for
higher availability or for load balancing if performance is an issue.

• There is only one VSM, which could prove a bottleneck for increasing availability if
it is prone to failure.

Scalability towards different offering levels

It may be possible to carry over components from an existing SAE L2 system for use in the
DSM.

• The FUN has similar functionality and requirements as an SAE L2 ADAS. This com-
ponent could potentially be reused in a lower tier vehicle with only an L2 system, re-
sulting in some cost savings.

• Other components of the system are specific to SAE L3 or higher (SFM, CSM, and
VSM). These components would likely be developed and manufactured only for the
fully functional AD system.

Number, complexity, and performance of subsystems

DSM includes a high number of complex and high-performance subsystems, which in-
teract in a complicated manner.

• The FUN is expected to have very high complexity and require very high perfor-
mance. The VSM is expected to have slightly lower complexity and performance
than the FUN.

• The CSM is expected to have moderate complexity and low performance needs.
The checking approach for CSM is unclear but may turn out to be more complex
than expected. The SFM is expected to have low complexity and low performance.

• Two disjunct sensor sets are required. This adds to the manufacturing cost and
complexity and would require additional wiring within the vehicle.

• Two redundant high-bandwidth communication networks are required. Similar to
the redundant sensors, this also adds to the manufacturing complexity and wiring
needed.

• Due to the high reliability on two disjunct sets of sensor data inputs, some fault mo-
nitoring would be necessary for each of them.

107www.the-autonomous.com

Complexity of validation

This architecture has a high number of diverse subsystems requiring independent verifi-
cation.

• The FUN, SFM, CSM, and the VSM perform different functions within the vehicle.
Unit test verification of each independent subsystem within the system would requi-
re an appropriate test harness to be developed to enable full control of inputs to
and access to outputs from each component.

• Multiple custom-built integration testing harnesses would be required to verify sub-
sets of the components as they are integrated together. The different components
would be developed in parallel and would require a staged integration testing ap-
proach. For example, the SFM is tightly coupled to the FUN as it performs checks on
it. They would likely be integrated, validated, and verified together initially. Next, the
VSM would be added and verified with the FUN and SFM. And lastly, the CSM is
tightly coupled to both the FUN and the VSM as it performs a comparison between
them. It would be integrated, validated, and verified with the completed system.

• Assuming parallel development of all components (except perhaps the FUN and
SFM), it is likely all would perform their certification activities separately (potentially
as SEooC). The final functional safety concept would then need to integrate all of
the different out-of-context components and validate all of the functional safety re-
quirements for the completed system.

• The FUN and the VSM can be treated as SEooCs, allowing for parallel develop-
ment and largely independent validation, verification, and certification. This is likely
to significantly lower validation efforts compared to validation just on the level of
the integrated system.

Required level of diversity

This architecture has a high number of diverse subsystems requiring independent deve-
lopment, safety verification / validation, and integration.

• The FUN and the SFM are complementary, making it easier to ensure sufficient in-
dependence.

• The FUN, SFM, CSM, and the VSM perform different functions within the vehicle.
The VSM is capable of driving fully autonomously, however it makes use of a diffe-
rent set of input sensors than the FUN and is intended only for short-term use when
the FUN is failing. The VSM is also expected to be a somewhat simpler control algo-
rithm than the FUN. Most likely there would be little commonality between the two.
Therefore, all four of these components would have very different functional requi-
rements, resulting in very diverse development, verification, and validation.

108 www.the-autonomous.com

4.2.5.6 SAFETY OF THE INTENDED FUNCTIONALITY

4.3 SPECIFIC EVALUATION IN THE CONTEXT OF
THE REFERENCE AD USE CASE
4.3.1 RELEVANCE OF THE EVALUATION CRITERIA IN THE CONTEXT
OF THE REFERENCE AD USE CASE

Depending on the selected use case, some KPIs may be more relevant
than others. For instance, scalability (defined as a measure of an archi-
tecture’s capability to be stepwise developed by extending SAE L2 sys-
tems) will likely not be relevant for urban SAE L5 robotaxis, which tend to
be developed from scratch and are not intended to be sold as optional
functions of standard OEM offerings to end customers.
Conversely, scalability may be highly relevant for a Highway Pilot functi-
on, which might be developed as a natural extension of highway-oriented
L2 applications.

In the following, we attempt to give an assessment of the selected KPIs in
the context of the reference use case of a Level 4 Highway Pilot. We em-
ploy the following ratings for the KPIs:

• Must-have

• Important

• Beneficial

• Unimportant

Support to manage operational conditions

• The SFM is explicitly intended to act as an ODD checker.

• Other aspects to ensure safe usage are not explicitly mentioned but could be consi-
dered in the implementation.

Support to accommodate functional insufficiencies

This architecture considers several SOTIF aspects in the responsibilities of its subsystems.

• The SFM is explicitly intended to act as an ODD checker.

• The FUN, SFM, and VSM perform different functions within the vehicle. They can be
implemented in a diverse way on the algorithmic level.

• A diverse set of sensors can be used.

• SFM and VSM collect and evaluate diagnostics data from the two sensor sets.

109www.the-autonomous.com

Readers of this document are encouraged to apply their own rating, in
their specific use cases, innovation space and constraints from commerci-
al, technical, or legacy requirements.

AVAILABILITY
In the context of an L4 Highway Pilot, availability of the system until suc-
cessful completion of an MRM will become a formal safety goal with an
ISO 26262 ASIL D target to be met (pending a formal HARA being con-
ducted), as a system failure in a dense highway traffic situation will usual-
ly not be controllable by the driver and the consequences of a crash might
be fatal. Therefore, availability is rated as a must-have for the reference
use case.

RELIABILITY
In the reference use case of an SAE L4 Highway Pilot, reliability (defined
as the continuous availability of the full, nominal functionality) is highly
desirable from a vehicle user’s perspective and shall be maximized. A
switch to degraded functionality, e.g., executing an MRM, will be at least
an annoyance or more likely disturbing for the passengers; frequent ones
will lead to severe customer complaints, but will at least not lead to harm.
Therefore, reliability is rated as important for the reference use case.

CYBERSECURITY
Vulnerability to cybersecurity threats impacts system safety, as an intruder
might deactivate an essential safety mechanism or even maliciously ma-
nipulate essential autonomous driving functions like sensor inputs or tra-
jectory planning. Still, an ADI by itself will not be able to fully avert cyber-
security risks, as many system functions (e.g., the sensors and actuators)
are outside its scope and additional mechanisms like gateways and
firewalls are needed. Therefore, although resilience to cybersecurity at-
tacks is a must-have for the vehicle and the AD system as a whole, it is
“just” considered important for the ADI system in the context of the refe-
rence use case.

SCALABILITY
Since the chosen reference use case of an L4 Highway Pilot may be deve-
loped as a natural extension of highway-oriented legacy L2 functions,
parts of those functions (legacy sensors, ECUs, application components)
might need to be incorporated into the realization of the L4 system. Con-
versely, SAE L2 functions might be implemented by a subset of com-
ponents of the L4 system, which has been developed from scratch. In both

110 www.the-autonomous.com

cases, the L4 functionality might be marketed as optional equipment, and
potentially a significant share of the overall vehicle volume might support
L2 functions only. To implement such a concept in a commercially viable
way, scalability is considered important for the reference use case.

SIMPLICITY
Although simpler than L5 functions or urban use cases, the algorithmic
and system complexity for an L4 Highway Pilot remains high and verifica-
tion and validation efforts might be prohibitive if not supported by a suita-
ble system architecture. The established concept of “divide and conquer”,
i.e., a conceptually clean, modular architecture with a well-arranged
number of components of clear purpose, simple interfaces, and clear de-
limitations to each other, will be at least important if not a must-have for
the reference use case.

SAFETY OF THE INTENDED FUNCTIONALITY
SOTIF is probably the key property and requirement that lay persons and
the general public associate with autonomous driving functions, and
technical as well as authority reports about incidents with autonomous
cars mostly focus on function aspects and deficiencies (like object detecti-
on capabilities). In the context of the reference use case, SOTIF is conside-
red a must-have.

111www.the-autonomous.com

4.3.2 ASSESSMENT OF THE CANDIDATE ARCHITECTURES UNDER
THE EVALUATION CRITERIA

4.3.2.1 AVAILABILITY ASSESSMENT

CONCLUSION:
For the reference AD use case of an L4 Highway Pilot, the channel-wise
DCF and the layer-wise DCF seem to be the architectures of choice from
an availability point of view. DSM is considered problematic due to its

Variant Assessment

Single-channel

This architecture is obviously very sensitive to single points of failure. To
make it somewhat resilient to such failures, several “internal” redun-
dancy measures will likely need to be installed in a detailed architec-
ture phase or even in an implementation phase, potentially in an ad-
hoc way (making it hard to verify their sufficiency and completeness).

Majority voting

The M-oo-N voting architecture with homogeneous channels addres-
ses random HW faults well, but is susceptible to common-cause failu-
res, as the complex AD algorithms will not usually be suitable for full
ASIL D development. Conversely, heterogeneous channels are not sui-
table for voting, as channels might each exhibit different (but valid)
driving policies, and therefore a faulty channel might not be identifia-
ble. This is especially true for the practical case of 1-oo-3 (TMR), where
the problem is likely not solvable.

Channel-wise
DCF

The channel-wise DCF architecture scores highly under the availability
criterion, as it exhibits no obvious single point of failure (provided that
the FTDSS subsystem is implemented in a fault-tolerant way) and due
to the asymmetric approach, with its diversity of the channels, also has
a high potential to rule out common cause faults.

Layer-wise
DCF

The layer-wise DCF architecture scores highly on the availability criteri-
on, due to its primary and secondary channels plus the MSTOP (blind
stop) capability. However, the published description suggests potential
single points of failure that would need to be avoided, e.g., using the
same occupancy grid in the primary and secondary channels (where-
as using that same input for the planners and safety gates of each
channel can be beneficial to avoid false positives - if used correctly to
restrict the planner’s decision space, not to extend it). Also, the symme-
tric architecture suggests sensitivity to common cause faults in the un-
derlying implementation, which would need to be avoided.

DSM

The Distributed Safety Mechanisms architecture is intended to support
the availability KPI, due to its multiple layers and redundancy mecha-
nisms. It has some similarity to the channel-wise DCF architecture but
offers additional degradation steps, giving in principle the potential for
higher availability; in the concrete implementation proposed, it does
not have a clear separation of the functional (FUN) and monitoring
(SFM) channels, but implements both within the same SOC and virtual
machine, and seems therefore highly sensitive to common cause faults.

112 www.the-autonomous.com

common-cause failure sensitivity, and majority voting is considered highly
problematic (if not unsuitable) in the practical case of non-deterministic
channels. Single-channel is considered to be unsuitable.

4.3.2.2 RELIABILITY ASSESSMENT

CONCLUSION:
For the reference AD use case of an L4 Highway Pilot, majority voting and
DSM seem to be the most capable architectures to sustain nominal functi-
onality. Channel-wise DCF and layer-wise DCF can approximate this to
some extent but will fall into degraded mode more often (due to their fo-
cus on safety). Single-channel does not support reliability at the architec-
tural level, it is strictly implementation dependent.

Variant Assessment

Single-channel

The resilience to functional deficiencies is not supported by any archi-
tectural measure but depends strictly on the internal implementation of
its subcomponents. As such, degradation measures will likely need to
be installed in a detailed architecture phase or even in an implemen-
tation phase, potentially in an ad-hoc way (making it hard to verify
their sufficiency and completeness).

Majority voting

The M-oo-N voting architecture will provide high reliability, as each of
its channels is conceptually capable of providing the full nominal func-
tionality and may even provide degraded modes. In fact, a compara-
ble level of capability for each channel is a precondition for successful
voting. A practical implementation as 1-oo-3 (TMR) will still exhibit high
reliability.

Channel-wise
DCF

The channel-wise DCF architecture can potentially score highly under
the reliability KPI but depends on the concrete capability level of its
CCDSS and MSS subsystems, and on the parameterization of the MSS
(which initiates the potentially degraded mode of the CEHSS), to not
produce false positives. For the CCDSS, being aware of the limits that
will be enforced by the MSS would be a helpful addition to the archi-
tecture.

Layer-wise
DCF

The layer-wise DCF architecture, like the channel-wise DCF, can po-
tentially score highly under the reliability criterion, but depends on the
concrete capability level of its primary channel and the monitoring
subsystems contained therein. To not produce false positives, it may fo-
resee precautions like restricting the primary’s decision space by the li-
mits imposed by the monitor (although this is not detailed in the publis-
hed description).

DSM The Distributed Safety Mechanisms architecture will provide high relia-
bility, due to its multiple and differentiated degradation steps.

113www.the-autonomous.com

4.3.2.3 CYBERSECURITY ASSESSMENT

CONCLUSION:
For the reference AD use case of an L4 Highway Pilot, channel-wise DCF
has the highest resilience against cybersecurity attacks, followed by layer-
wise DCF with its higher exposure due to the larger number of safety
gates. DSM seems to be more vulnerable due to its high number of in-
teractions and tightly coupled components. Majority voting will be vulne-
rable in the case of homogeneous channels. Architecture-wise, single-
channel does not provide any protection from cybersecurity threats.

Variant Assessment

Single-channel
This architecture is critical from a cybersecurity point of view, as its sin-
gle channel does not provide any architectural partitioning but expo-
ses its complete functionality to a malicious intruder.

Majority voting

The M-oo-N voting architecture has beneficial properties from a cyber-
security perspective, as its channels are highly separated and ex-
change little (if any) information, and the voting component itself is ex-
pected to be simple and well-separated. However, if its channels are
implemented homogeneously, this will be highly susceptible to expo-
sing a common vulnerability.

Channel-wise
DCF

The channel-wise DCF architecture scores highly under the cybersecu-
rity KPI, as its clearly separated components exchange only a small
amount of well-defined information and are highly diverse, potentially
avoiding common vulnerabilities.

Layer-wise
DCF

The layer-wise DCF architecture scores highly under the cybersecurity
KPI, due to its clearly separated components. However, a successful
attack to one single (of several) safety gates would compromise the
overall system.

DSM

The Distributed Safety Mechanisms architecture seems to be more vul-
nerable from a cybersecurity point of view, as its high number of in-
teractions between subsystems and (partly) missing separation might
make it more exposed to attackers.

114 www.the-autonomous.com

4.3.2.4 SCALABILITY ASSESSMENT

CONCLUSION:
For the reference AD use case of an L4 Highway Pilot, the majority voting
architecture seems to be the best option to both downscale to L2 and ups-
cale to L5. Channel-wise and layer-wise DCF seem to provide good ca-
pabilities to downscale to an L2 system or leverage L2 system develop-
ments, whereas DSM seem to be a better fit for upscaling to an L5 system.
Single-channel does not support scaling at all.

Variant Assessment

Single-channel This architecture does not provide any scaling options.

Majority voting

The M-oo-N voting architecture appears to be highly scalable, as one
of its channels can be used to downscale to an L2 system or could be
derived by extending an existing L2 system. Likewise, it could be ups-
caled by adding channels.

Channel-wise
DCF

The main component of the channel-wise DCF architecture (CCDSS)
can be used to downscale to an L2 system or could be derived by ex-
tending an existing L2 system.

Layer-wise
DCF

The primary components of the layer-wise DCF architecture can be
used to downscale to an L2 system or could be derived by extending
an existing L2 system.

DSM

Some of the components of the Distributed Safety Mechanisms may be
derived by extending an existing L2 system. It is not obvious, however,
how it could be downscaled to an L2 system by essentially just remo-
ving L4-related components. It could be upscaled to L5 by adding
FUN/SFM components, but its VSM would need to be substantially ex-
tended.

115www.the-autonomous.com

4.3.2.5 SIMPLICITY ASSESSMENT

CONCLUSION:
For the reference AD use case of an L4 Highway Pilot, channel-wise DCF
and layer-wise DCF seem to be preferable with respect to simplicity, i.e.,
reasonable integration and validation efforts. DSM is highly complex,
especially for the system integrator. Majority voting seems simple, but the
individual channels’ complexity is high, as is their integration in the case
of heterogeneous channels. Single-channel is superficially the simplest
but is expected to require high verification and validation efforts.

Variant Assessment

Single-channel
This architecture superficially seems to be simple, but its monolithic ap-
proach and lack of clearly separated subsystems will lead to high
complexity and effort for implementation, verification, and validation.

Majority voting

The M-oo-N voting architecture appears to score highly under the sim-
plicity criterion, due to its regular structure. However, each individual
channel might have similar properties to the single-channel architec-
ture, with comparable consequences for implementation and verificati-
on efforts. Relaxation on the individual channels due to the subsequent
voting might be offset by efforts to identify faulty channels correctly. This
might be a challenge for the system integrator, and for TMR (1-oo-3) as
a practical option, it is questionable whether this can be solved at all.

Channel-wise
DCF

The channel-wise DCF architecture is conceptually simple, as its clear-
ly separated components with distinguished purposes and well-defi-
ned message exchange enable modular, separate development and
simpler overall safety assessment. CCDSS will be the most complex
component, but less effort than one of the majority voting’s channels,
due to the highly diverse MSS supervision. Efforts for the system integra-
tor seem to be reasonable.

Layer-wise
DCF

The layer-wise DCF architecture has clearly separated components
with distinguished purposes and well-defined message exchange, but
the higher number of components and level of information exchange
(compared to the channel-wise DCF) will increase the burden on the
system integrator and complicate overall safety assessment. On the
other hand, the layered approach might enable a more modular, se-
parate development.

DSM

The FUN, SFM, CSM, and the VSM modules of the Distributed Safety
Mechanisms are separated, enabling separate development and veri-
fication, but interact in complex and highly diverse ways, thus putting a
high burden on the system integrator and complicating the overall
safety assessment. The proposed architecture also mixes functional
aspects (FUN, SFM, VSM) with system integrity aspects (CSM) and im-
plementation aspects (middleware, virtual machine) – it will thus be
critical to decompose and assign the required system properties to the
entities of the architecture in a clear, consistent, and complete way.

116 www.the-autonomous.com

4.3.2.6 SOTIF ASSESSMENT

CONCLUSION:
For the reference AD use case of an L4 Highway Pilot, the channel-wise
DCF, the layer-wise DCF and the DSM are the architectures of choice from
a SOTIF point of view. Majority voting is highly problematic (if not unsuita-
ble) in the case of heterogeneous channels, as correct voting cannot be
ensured. Majority voting with homogeneous channels and the single-
channel architecture are highly sensitive to functional deficiencies and
off-nominal conditions, and therefore likely unsuitable.

Variant Assessment

Single-channel

Due to its monolithic nature, this architecture is obviously very sensitive to
functional deficiencies and to deviations from the nominal conditions,
especially since it will need to rely on machine learning to achieve the per-
formance goals and there is no visible means of supervision or diversity.

Majority voting

The M-oo-N voting architecture with homogeneous channels is
susceptible to common-cause failures by functional deficiencies or de-
viations from the nominal conditions. Conversely, heterogeneous chan-
nels are not suitable for voting, as channels might each exhibit diffe-
rent (but valid) driving policies, and therefore a faulty channel might
not be identifiable. This is especially true for the practical case of 1-oo-
3 (TMR), where the problem is likely not solvable.

Channel-wise
DCF

The channel-wise DCF architecture scores highly under the SOTIF crite-
rion, as it exhibits a natural diversity between the CCDSS and the MSS,
and the CEHSS (being explicitly foreseen for out-of-ODD operation) is
likely implemented very differently than the CCDSS. This architecture
also quite naturally manages changes to the nominal conditions.

Layer-wise
DCF

The layer-wise DCF architecture scores highly under the SOTIF criteri-
on, as it employs multiple checkers and safety gates both on its primary
and secondary channels, promoting modularity and diversity which
also has a positive impact on development and V&V. It may be capa-
ble of addressing deviations from the nominal conditions well, but this
seems not to be explicitly foreseen.

DSM
The Distributed Safety Mechanisms architecture highly promotes SOTIF,
due to the different functions performed by its FUN, SFM and VSM mo-
dules. Management of off-nominal conditions is also explicitly foreseen.

117www.the-autonomous.com

4.3.3 EVALUATION SUMMARY

The following table gives a summarizing overview of the evaluation fin-
dings, if and how the criteria are supported by the respective architectu-
res:

In general, we find that asymmetric architectures (Channel-wise DCF,
Layer-wise DCF and DSM) are better suited than symmetric ones (Single-
Channel, Majority Voting) for the complexity in Automated Driving.

Their quite naturally independently developed and complementary
channels can compensate for each other’s weaknesses, compared to the
essentially identical or potentially even monolithic implementations of
symmetric architectures.

Single-
Channel

Majority
Voting

Channel-
wise DCF

Layer-wise
DCF DSM

Availability Not
supported

Homogeneous:
yes, but common
cause risk Hete-
rogeneous: no

Concept fo-
cuses on
availability

Concept fo-
cuses on
availability,
risk of single
point failures

Sensitivity to
common cau-
se failures

Reliability Not
supported

Homogeneous:
low Heteroge-
neous: high

Reasonable
reliability, im-
plementation
dependent

Reasonable
reliability,
with precauti-
ons by archi-
tecture

Multiple diffe-
rentiated de-
gradation
steps

Cyber-
security

Not
supported

Homogeneous:
low Heteroge-
neous : high

Diverse struc-
ture with high
resilience

Diverse struc-
ture, but mul-
tiple single-
attack points

Diverse struc-
ture, but
complexity
might expose
vulnerabilities

Scalability Not
supported

Omit / add chan-
nels to scale

Omit chan-
nels to
downscale to
L2

Omit chan-
nels to
downscale to
L2

Downscaling
to L2 not
straightfor-
ward, but po-
tential to ups-
cale to L5

Simplicity High inner
complexity

Simple architec-
ture, complex
channels

Simple, clear
concept

Structured,
medium
complexity

High comple-
xity for the in-
tegrator

SOTIF
Support

Not
supported

Not supported
due to homoge-
neous architec-
ture

Structure sup-
ports SOTIF

Structure sup-
ports SOTIF

Structure sup-
ports SOTIF

118 www.the-autonomous.com

The asymmetric architectures basically employ two design patterns and
combine them in different ways:

• Doer / Checker: One subsystem performs the function, the other one
monitors it.

• Active / Hot Stand-By: One subsystem is active, and the other is on
stand-by; if the active is unavailable or unsafe, the stand-by takes over.

A combination of these patterns allows for a sound partitioning into mo-
dules with simple and purposeful interfaces that can be independently
verified and whose integration is straightforward and readily verifiable.
Also, these patterns lead to a limited, well-arranged and predictable
number of system states under both nominal and off-nominal conditions.
A solid and verifiable safety argumentation can then be constructed sys-
tematically based on the individually developed modules and their suc-
cessful integration.

5 IMPLEMENTATION
CONSIDERATIONS
5.1 HW MAPPING CONSIDERATIONS

In this section, a short introduction to some aspects of HW refinement of
the conceptual system architecture is given. This is not a complete list of
aspects.

5.1.1 HIGH AVAILABILITY AND VEHICLE OPERATING STATES

Architectures in the Automated Driving (AD) context in general should not
limit their functionality to a dedicated vehicle operating state (like par-
king, standing still, driving slowly etc.), but should work in fault-free con-
dition in all vehicle states. But the loss of the functionality can lead to a
hazardous event only in specific vehicle operating states. One valid ap-
proach for degradation of Automated Driving functionality is to change
the operating state to lower severity or exposure, for instance by lowering
the vehicle speed in a controlled way. In this context, please check ISO
26262:2018-10 §12.

Emergency operation exposure time as reaction to a fault should be limi-

119www.the-autonomous.com

ted if the ASIL capability of the item is lower than the ASIL rating of the
possible hazard. If after the occurrence of the fault, the vehicle operating
states are not changed, then the ASIL is the same as that derived from the
HARA and no ASIL decomposition of main path and a potential redun-
dant path is allowed.

For redundant paths, a dependent failure analysis should be executed to
find and eliminate common cause initiators.

5.1.2 COMMON CAUSE INITIATORS

ISO 26262:2018-9 §7 requires assessment of Common Cause Initiators
(CCI):

a. Random HW faults
Many of the system architectures use redundant channels to mitigate
random HW faults in one channel by providing the same function in
the redundant channel. There is a very small chance that in the Safe-
ty Goal-relevant time interval a random HW fault is detected in the
redundant channel as well. A good strategy to treat this case is to
use diverse configuration of fault reaction in the first and redundant
channel.

b. Development faults
Those are covered by ASIL D development process, requirement-dri-
ven development flow and tool chain qualification process. A Deve-
lopment Process Documentation (DPD) can provide information rela-
ted to the following topics:

i. Development Process

ii. Development Environment

iii. Requirement Management

c. Manufacturing faults
The manufacturer should monitor the compliance with the related
standards, e.g., by Audits, Production Assessment and Process FMEA
activities. Particular focus should be put on the verification by testing
of characteristics determined by analogue circuitries, including in
quasi-digital parts such as memory. ISO/TS16949 certificates should

A Quality Process Documentation (QPD) can provide references to
cover various quality management and production-related topics.
Both contribute to a Quality Process Management with the goal of
providing the best avoidance of systematic development faults.

120 www.the-autonomous.com

be provided by all manufacturing sites documenting process compli-
ance. An ISO 9001 certificate covers all sites, locations and organiza-
tional units of a manufacturer. TS16949 certificates cover all produc-
tion sites, headquarters, automotive design centers, and sales. AS
9100 certificates cover production sites in America.

The Production Part Approval Process (Produktionsteil-Abnahmever-
fahren, PPAP) [AIAG] is comparable to the PPA Production Process
and Product Approval (PFF Produktionsprozess- und Produkt- Frei-
gabe) [VDA]. Both procedures are reflected in the ZVEI PPAP Guide-
line. The Automotive Industry Action Group (AIAG) has developed a
common PPAP standard as part of the Advanced Product Quality
Planning (APQP) to use a common terminology and standard forms
to document project status. Companies may have their own individu-
al requirements. PPAP is the documentation (snapshot) of the current
state of the product design, functionality, and reliability as well as
the production processes used.

d. Installation faults + e) Repair faults
This CCI category shall be mainly addressed by OEM and TIER1 sup-
pliers. The guidance given by suppliers in their user manuals and
safety application guidelines shall be obeyed.

e. +h) Environmental factor incl. stress
The prototypes and series components of ADS should be subject to
Environmental Stress as defined by semiconductor standards and by
the automotive industry, such as AEC-Q100. OEM and their TIER1
suppliers shall analyze the potential impact on their diversity claim.

f. Common external resources
The functional safety of external resources, such as power supply,
debug support and communication interfaces shall be analyzed for
potential common causes to redundant channels.

5.1.3 CLOCK, POWER, RESET, DEBUG AND TEST FAILURES

Infrastructure functions in Automated Driving systems are typically com-
mon cause initiators on the hardware level.

The clock configuration of an automated driving system is defined during
the development phase and is usually static during runtime. Therefore,
any systematic failure affecting its functionality or monitoring capability is
assumed to be found during integration verification. A diverse crystal os-

121www.the-autonomous.com

cillator type or PCB layout for redundant and diverse paths can reduce
dependent failures. Diverse configuration settings of clock upscaling and
distribution can reduce dependent failure.

Systematic faults in power supply circuits can affect the voltage regulator
characteristic. Extreme corner cases (which could escape system validati-
on) are unlikely to happen identically in redundant and diverse paths for
an Automated Driving system.

During the operation of an Automated Driving system, a reset of hardware
components can be used as a reaction to detected faults, but also has a
high impact on the availability of the system. Reset as failure reaction
should be used only for failures which cannot be handled otherwise. A
diverse configuration of all reset sources (especially fault reaction) can
reduce dependent failures. Under certain conditions, the redundant path
can be configured to ignore all reset sources (in the case of a fault
detected in the main path).

Debug is meant to be used during SW development only, therefore its sys-
tematic failures do not affect the functionality of the Automated Driving
system during runtime. During safety application, all debug functionality
should be disabled. The only remaining systematic faults could result from
SW activation with critical failure mode “unintended debug”. Diverse SW
implementation can reduce dependent failure (e.g., redundant path wi-
thout any debug SW parts compiled).

Test functionalities based on Built-In Self-Test (BIST) are executed during
startup only, therefore its systematic failures do not affect the functionality
of the Automated Driving system during runtime. During safety applicati-
on, all test functionality should be removed. Only remaining systematic
faults could result from SW activation with critical failure mode “uninten-
ded test”. Diverse SW implementation can reduce dependent failure (e.g.,
redundant path without any test SW parts compiled).

5.2 SW MAPPING CONSIDERATIONS

This section contains some selected topics to consider when analyzing the
system architecture towards further refinement of the technical aspects at
the software level.

122 www.the-autonomous.com

5.2.1 SOFTWARE ARCHITECTURAL STYLES

The main aspect to consider is the software architectural design itself. An
exhaustive description of software architecture styles (e.g., layered, mo-
nolithic, microkernel, pipes and filters, client-server, publisher-subscriber,
event-driven) and their applications is beyond the scope of this report, but
we can recommend using [45] to get a good overview. Furthermore, this
report does not address how safety measures are appropriately integra-
ted into such software architectures.

Regardless of the choice of architectural styles for individual software ele-
ments, there are common safety measures, which are listed in the followi-
ng non-exhaustive list:

• Graceful degradation behavior by ensuring that there is no single
point of failure, especially for middleware and service-oriented soft-
ware components.

• Error detection and handling mechanisms, as described in ISO
26262 [2] Parts 6 and 10, as well as the capability to store diagnostic
data.

• Use of adequate programming languages and techniques, inclu-
ding the application of design and coding guidelines, such as MIS-
RA C, AUTOSAR C++, CERT.

• Performing architecture analysis, such as Failure Modes and Effects
Analysis (FMEA) and Architecture Trade-off Analysis Method (ATAM)
[45].

• Evaluation and optimization of metrics related to the quality aspects
of the architecture (e.g., complexity, dependencies, stability of code
and interfaces).

An important aspect to mention here is the shift from federated to centra-
lized architectures in automotive systems. In such centralized architectu-
res, the software is executed redundantly using the mechanisms of virtua-
lization and containerization (i.e., with hypervisors coordinating resources
and virtual machines processes). Consequently, the system is more flexi-
ble and hardware costs can be reduced. On the other hand, distributing
processes to virtual machines brings some challenges in terms of integra-
tion and testing, as well as cybersecurity.

123www.the-autonomous.com

5.2.2 PROPERTY OF TECHNICAL INDEPENDENCE

As stated in ISO 26262 [2] Part 9, to achieve technical independence bet-
ween components of the system, cascading and common cause failures
that compromise a safety requirement shall be avoided. While the factors
listed in 5.1.2 apply to hardware, similar classes of coupling factors shall
be considered for software elements:

• Shared resources, e.g., use of identical software modules without
further independence measures, use of mathematical or other soft-
ware libraries.

• Shared information input, e.g., global variables, data or messages
used by more than one software element.

• Systematic coupling, e.g., same software tools, same programming
or modeling language, reuse of assumptions and requirements for
different software implementations.

• Components of identical type, e.g., same source code generated
twice.

• Communication, e.g., global variables, messaging, function calls
with arguments passed.

• Unintended interface, e.g., same memory space.

5.2.3 SOFTWARE REUSE

Reusable software (e.g., third party software, libraries, FOSS) can signi-
ficantly reduce the development effort for AD systems. Variant manage-
ment, software configuration and the integration into different architectu-
res are aspects that need to be done carefully to avoid dependability
issues.

In addition to the requirements and recommendations for the develop-
ment of SW-SEooCs and the qualification of software components contai-
ned in ISO 26262 [2] Parts 8 and 10, there are new standardization efforts
that complement these and provide further guidance:

• ISO/AWI PAS 8926 Road vehicles – Functional safety – Qualification
of pre-existing software products for safety-related applications (un-
der development).

• Public initiatives such as the project Enabling Linux in Safety Appli-
cations (ELISA, see https://elisa.tech/).

124 www.the-autonomous.com

5.2.4 SOFTWARE UPDATES

With the move to software-defined vehicles, architectures of AD systems
must ensure regular, continuous updates of software elements in a safe
manner for the long term, including over-the-air (OTA) ones. This capabi-
lity is closely related to quality aspects such as modularity, modifiability,
portability, extensibility, and verifiability, along with the challenge of ad-
ditional safety and cybersecurity risks (e.g., risks associated with the use
of cloud services).

To standardize the software update engineering process, ISO 24089 [46]
has been recently published. It contains requirements and recommenda-
tions on planning, risk management, V&V, deployment, and monitoring of
software updates, but does not include specific technologies or solutions.

5.2.5 REAL-TIME OPERATING SYSTEMS (RTOS) AND MIDDLEWARE

The software responsible for providing basic services and interfacing the
software applications with the hardware (i.e., the electronic buses, CPUs,
and ECUs) requires a high level of integrity. The well-known standard AU-
TOSAR (AUTomotive Open System Architecture, see www.autosar.org)
has been largely used in its original version (i.e., Classic Platform) as the
basis for traditional automotive functionalities such as engine control and
transmission. For AD systems, however, more complex software applicati-
ons and high-performance computations are to be supported. Thus, a
middleware based on the new AUTOSAR Adaptive Platform includes ad-
vanced functionalities, such as:

• Runtime configuration

• OTA software updates

• Ethernet inter-ECU communication for the transmission of large data

• High-performance hardware

• Service-oriented communication

• Compatibility with other operating systems (e.g., Linux, Android)

Other capabilities that go beyond the AUTOSAR Adaptive standard might
be required, for example scheduling and real-time guarantees for event
chains across complex, multi-partition or multi-SOC architectures.

125www.the-autonomous.com

5.2.6 MACHINE LEARNING AND DATA-DRIVEN APPROACHES

The use of machine learning (ML) in the automotive industry was essenti-
ally introduced to address the challenges of the perception tasks (e.g.,
object recognition, pedestrian detection, signs recognition, road intersec-
tion detection). While the neural network model used might play a rele-
vant role to ensure safe outputs, the performance of ML-based software
depends mostly on data engineering aspects. Typical issues to avoid du-
ring development of such software are:

• Bias in data collection

• Patterns of mislabeling in training data

• Poor design of experiments for simulation validation

Another important aspect is the potentially non-deterministic behavior of
ML-based software due to the inclusion of stochastic aspects in the trai-
ning process or the concrete implementation. Architectures that integrate
ML-based software require safety mechanisms such as redundancy and
plausibility checks (e.g., safety wrappers) which makes them more
complex. In general, analyzing reliability- and safety-related failure mo-
des and mitigating them with appropriate error detection and handling
mechanisms is one of the key challenges for ML-based software.

5.2.7 DATA MANAGEMENT

In addition to the safety implications of data-driven approaches in the
context of ML, other aspects related to data management also require
decision-making at the architecture and implementation level. Some safe-
ty aspects related to data management are:

• Data and software configuration management (e.g., to support vari-
ant management and software updates).

• Assuring safety of internal-to-vehicle data management (e.g., inter-
nal maps used for vehicle localization are uncorrupted and of a
compatible version).

• Integrity of collecting, storing, and transmitting engineering field
feedback data, including safety performance indicators.

5.2.8 TOOL QUALIFICATION

Tool evaluation and qualification processes are described in ISO 26262
[2] Parts 8 and 10. Due to the increasing complexity of the software deve-

126 www.the-autonomous.com

lopment environment and the technologies used, the topic has become
crucial. Continuous Integration (CI), static and dynamic code analysis,
testing and simulation tools, model-based code generation, documenta-
tion generation: essentially all software engineering processes are beco-
ming automated. While this is necessary to manage development and
maintenance efforts, challenges arise from increasing reliance on the tool
chain and infrastructure, with all the associated risks related to troubles-
hooting, cybersecurity, privacy, and safety.

To the degree that simulation is used to supplant vehicle testing, tool qua-
lification of simulations, simulation models, and simulation orchestrators
will become more critical. The same applies to the tools needed to mitiga-
te the risk of data bias, inaccurate data labels, and data corruption in
such simulation-based validations.

From a system architecture point of view, the use of different tools for red-
undant subsystems may be necessary to rule out common points of failure
due to tool malfunctions.

5.3 SAFETY ARGUMENTATION

5.3.1 APPLICABLE SAFETY STANDARDS

With respect to safety, the relevant ISO standards are ISO 26262 (Functio-
nal Safety) and ISO 21448 (Safety of the Intended Functionality), which
should be followed throughout the development of an AD system. Alt-
hough compliance with those standards is not a formal (legal) require-
ment for vehicle homologation, they are considered “state of the art” (also
in a legal sense) and therefore most OEMs adhere to them in their deve-
lopment processes and prescribe them to their suppliers.

5.3.2 ISO 26262 (FUNCTIONAL SAFETY) CONSIDERATIONS FOR THE
ADI IMPLEMENTATION

ASIL ASSIGNMENT
It is safe to assume that an AD system for an L4 Highway Pilot will get the
ASIL D level assigned, as all three relevant factors will contribute and
lead to this highest classification in terms of ISO 26262:

• Severity will be S3 (highest), as a malfunction of the AD system du-
ring autonomous operation can lead to a fatal crash.

• Exposure will be E4 (highest), as the vehicle will be in a potentially ha-

127www.the-autonomous.com

zardous situation during autonomous operation with high probability.

• Controllability will be C3 (highest), as a malfunction while in autono-
mous operation will not be controllable by the passengers (would re-
quire an immediate attention shift and takeover by the “driver”)²³.

For a concrete system, of course, a Hazard Analysis and Risk Assessment
(HARA) needs to be conducted to derive safety goals and associated
ASILs, but without doubt will lead to the classifications above for many of
a Highway Pilot’s functions.

ASIL DECOMPOSITION
Note that the ASIL D assignment is valid for the AD system as a whole (for-
mally: for its safety goals) and may be lowered for some of its constituents
by appropriate ASIL decomposition. This involves partitioning the system
into sub-components with lower ASIL that jointly realize the safety goal
and must be integrated using ASIL D-compliant technical measures and
processes.
In the context of an L4 Highway Pilot, decomposition is also a practical
necessity, as many components required to implement it are too complex
to completely fulfill ASIL D criteria – like high-end SOCs, operating sys-
tems, or application software components.²⁴

AVAILABILITY AS A SAFETY GOAL
ISO 26262 was originally for traditional powertrain, steering, braking or
even ADAS (L1 or L2) functions, and those systems are usually developed
with a correctness goal defined and a fail-silent system reaction, i.e.,
switch-off in the case of a malfunction.
For an L4 Highway Pilot with its fail-operational/fail-degraded require-
ment, however, the availability of the AD system becomes a safety goal
with ASIL D too and needs to be met by applying appropriate technical
and process measures – as any sudden non-availability of the AD system
during L4 operation will not be controllable by the passengers and will
likely cause harm (up to fatalities).

²³ Note that ISO 26262 refers to “the driver or other persons involved in the operational situation” for
classifying the Controllability. Strictly speaking, there is no “driver” for an L4 function, but we apply the
definition analogously, because for a Highway Pilot we still assume a person present in the driver’s seat,
who needs to control the vehicle anyway until highway entry and after highway exit.
²⁴ Machine learning algorithms are often cited as intractable for development according to ISO 26262.
Actually, their regular structure for the inference phase makes them quite easily compliant.

128 www.the-autonomous.com

REDUNDANCY
On the architecture level, the availability goal is usually addressed by ap-
propriate redundancy measures, which are installed to cope with the un-
avoidable failure of individual components of the system (for example,
due to permanent or transient electronic faults, or due to residual SW er-
rors). All architectures evaluated in this report exhibit such redundancy,
except for the Single-Channel architecture.

SUFFICIENT INDEPENDENCE
Redundancy is not sufficient to ensure availability: sufficient indepen-
dence of the redundant components must also be ensured, to avoid com-
mon cause or cascading failures which would cause redundant com-
ponents to fail jointly and render the whole AD system unavailable. The
same argumentation applies to ASIL decomposition: it is only allowed if
the constituent components are independent of each other and cannot
jointly violate the functional safety goals.
In the case of an L4 Highway Pilot, this means that decomposed / redun-
dant system channels must be implemented in a sufficiently diverse fa-
shion to rule out common cause failures that might impede either the func-
tional correctness (e.g., in a doer-checker configuration) or the system
availability (e.g., in a main-fallback configuration).

IS ASIL D ENOUGH?
ISO 26262 does not give any reference or consideration to the system’s
complexity – effectively an ASIL D SW component implemented with 5
kLOCs is considered to be equally safe as a system that contains 100
kLOCs. However, according to [10], a system with more than 10 kLOCs is
likely to exhibit residual systematic SW errors, even when developed to the
highest safety standards.
An L4 Highway Pilot can be considered a highly complex system and will
for sure involve much more than 10 kLOCs for its implementation. Therefo-
re, even the application of the ASIL D process to a complex system chan-
nel might not ensure system safety – instead, partitioning such a channel
into smaller constituents with lower complexity, which are developed to
ASIL D and can be readily (individually) verified, should be considered.

COMPLEX INTERACTIONS
All the investigated ADI architectures except the single-channel architec-
ture exhibit some functionally and/or availability motivated partitioning
that reflects the need for redundancy and decomposition. Some are al-
ready initially quite complex (DSM, layer-wise DCF), but even the simpler

129www.the-autonomous.com

ones (channel-wise DCF, majority voting) are likely to require further par-
titioning within their channels, to arrive at technically tractable implemen-
tations. Such partitioning will also support the ASIL D argument, as reflec-
ted above.
In any case, one might end up with a significant number of components
with a (combined) potentially enormous number of system states and
complex internal interaction. To prove that the integrated system posses-
ses the expected safety and availability properties, and does not exhibit
any unintended emergent behavior, formal modelling and verification
can be employed. Such a process can give mathematical correctness ass-
urances, where human cognitive limits are exceeded, and manual verifi-
cation would be too error-prone.

5.3.3 ISO 21448 (SOTIF) CONSIDERATIONS FOR THE ADI IMPLE-
MENTATION

The standard SOTIF-ensuring process according to ISO 21448 shall be fol-
lowed when implementing the ADI, both on a system level and when imple-
menting the channels and components of the architectures presented here.

Architecture considerations or dedicated architecture design and evalua-
tion steps are not reflected in that standard; mentioned system modificati-
on steps to ensure SOTIF mostly focus on functional aspects and not archi-
tectural measures. Still, the chosen architecture will have a decisive
impact on the efforts required to develop and validate an AD system.

However, certain architecture aspects are mentioned in ISO 21448, and
closer examination shows that the architectures presented here quite na-
turally support the standard, and actually help to reduce the effort requi-
red for ensuring SOTIF.

SENSE-PLAN-ACT
The established Sense-Plan-Act paradigm is used in ISO to motivate a
modular specification, design, and V&V approach, with individual quali-
tative and quantitative development goals for each layer. In the architec-
tures described in this report, the analogous layering is explicitly foreseen
only in the layer-wise DCF architecture. However, the other architectures
can (and will need to) be broken down into a similar structure for their
high-level building blocks, like the channels of the majority voting and
channel-wise DCF architectures, the FUN layer of the DSM architecture,
and in particular the single-channel architecture.

130 www.the-autonomous.com

DDT FALLBACK
The “DDT fallback” is assumed as a functional entity (not necessarily an
architecture element) in ISO 21448. This element is present in all the archi-
tectures discussed here, except the single-channel architecture, in an
explicit manner (channel-wise DCF, layer-wise DCF, DSM) and implicitly
through the multiple channels of the majority voting architecture.

ARCHITECTURE IMPACT ON V&V
ISO 21448 acknowledges that a suitable architecture can support more
efficient verification and validation by enabling a modular approach and
reducing the effort for V&V of individual components (compare also G3:
Testing and simulation of very high safety-related availability of large mo-
nolithic system and D1: Fault Containment Units). Diversity and indepen-
dence arguments (compare also D3: Diversity and redundancy for
complex subsystems) are used, albeit in example form only and not as an
integral part of the process to achieve SOTIF.

5.3.4 PROPOSED SUPPORTING STEPS FOR THE ADI IMPLEMENTATION

Potentially exceeding the standard ISO 26262 and ISO 21448 processes
and reflecting the safety considerations from the previous sections, the fol-
lowing four development steps are suggested for the implementation of
the described architectures of an L4 Highway Pilot:

STEP #1: SYSTEM PARTITIONING AND MAPPING
Partitioning the system into subsystems (see also D1: Fault Containment
Units) that jointly implement the L4 Highway Pilot functionality is usually
done as one integral step, to meet the system correctness goals, the
availability goals and ensure feasibility of the ASIL D requirements. In fact,
the presented architectures (except the Single-Channel architecture) lar-
gely anticipate this step, introducing redundancy to ensure system availa-
bility and checking instances to ensure system correctness (integrity).

131www.the-autonomous.com

The partitioned system architectures also serve as a basis for the formal
ASIL decomposition; assignment of proper ASILs to the individual com-
ponents is therefore necessary. We anticipate the following assignments:

Develop-
ment step Goal Description

System
Partitioning

System
correctness

Ensure correct system outputs (e.g., trajectories) under the envi-
ronmental and vehicle conditions:

• Doer-Checker configuration in Layer-wise and Channel-
wise DCF architectures

• Channels in Majority Voting architecture

• FUN/SFM/CSM in the DSM architecture

System
availability

Add redundancy to ensure availability of the system under com-
ponent failures

• Doer-Fallback configuration in Layer-wise and Channel-
wise DCF architectures

• Channels in Majority Voting architecture

• VSM and Primary/Secondary Networks in the DSM archi-
tecture

ASIL D
feasibility

Further partition (modularize) the channels to enable ASIL D ca-
pable subsystems under HW and SW component constraints.
This is usually not visible on the conceptual architecture level,
but a necessary practical step in all architectures. Examples are:

• Separate perception components per sensor

• Low-level vs. high-level fusion

• Trajectory planning and validation

• Voting and decision components

132 www.the-autonomous.com

After the (logical) system partitioning and ASIL decomposition, the map-
ping of the components to available HW modules (SOCs) and SW partiti-
ons/operating systems needs to be performed, including selection of ap-
propriate communication means between the components. This mapping
will be largely guided by the functional demands (e.g., compute perfor-
mance requirements of each logical component, network bandwidth re-
quired) and the available functional safety support by SOCs and the SW
platform; it may be an iterative process until an optimum solution is found.
For the sake of generality, this report does not consider specific SOCs and
SW platforms, and therefore does not dive into the mapping task further.

Archi-
tecture ASIL Components

Single-
Channel D Whole architecture

Majority
Voter
(1-oo-3)

B(D)²⁵ Channels

D Voter (also fail-operational)

Channel-
Wise DCF

B(D) CCDSS, MSS, CEHSS

D FTDSS (also fail-operational)

Layer-Wise
DCF

B(D)

Primary/Safing Planners, Primary/Safing Planner Safing Gates,
Primary/Safing Trajectory Executor, Primary/Safing Trajectory
Executor Gates (some integration functionality between these
nodes may be ASIL D, but is not explicitly visible)

D Priority Selector, Vehicle Control (also fail-operational)

DSM

B(D) FUN (Function), SFM (Sensor and Function Monitor), Primary
Network, Secondary Network.

D CSM (Controller Safety Mechanism), VSM (Vehicle Safety Me-
chanism)

²⁵ Instead of the B(D) + B(D) decompositions, other variants are also possible where multiple
components work together: A(D) + C(D) or QM(D) + D.the learning phase with its non-deterministic
properties that stands in the way. The main problem to solve lies in the SOTIF domain, not in the
functional safety.

133www.the-autonomous.com

STEP #2: FORMAL MODELLING AND VERIFICATION
After the partitioning and mapping has been performed, a complex archi-
tecture with a significant number of components and interaction may be
the result. To validate the result, formal methods can be used to deal with
the potentially large, and often cognitively intractable number of system
states and ensure the desired system properties with a mathematical proof.

STEP #3: SUFFICIENT INDEPENDENCE ANALYSIS
The design goal D7: Mitigation of common-cause hazards purposefully
prescribes introducing diversity on the architecture and implementation
level. Nevertheless, in realistic implementation scenarios, the redundant
channels of the conceptual system architectures might be implemented
on homogeneous platforms (e.g., SoCs and OSs) and communication
technologies. Also, the implementation of applications like AD algorithms
might share a set of mathematical libraries, HW accelerator layers, etc.
This might even be extended to joint perception and fusion components
used by the different channels.
To achieve a sound safety argumentation, a systematic and detailed ana-
lysis of “sufficient independence” will need to be performed, to rule out
common cause and cascading faults. Note that such an analysis will be
necessary even if the components of each channel are sourced from dif-
ferent suppliers or implemented by different teams, as they might use
identical third party components, derive from the same architecture spe-
cification (e.g., AUTOSAR), or use identical legacy IP blocks even within
heterogeneous SOCs.

Develop-
ment step Goal Description

Formal
Modeling
and
Validation

Logical consistency,
correctness, and
system availability

Create formal system model and formal description of
desired properties, and simulate on logical (conceptual
architecture) level

• Proof of desired properties

• Absence of violations of such properties (e.g.,
absence of single points of failure)

• Avoidance of unintended emergent behavior

Logical - physical
consistency, system
availability

Add formal modeling of the mapping of the logical
building blocks to physical components and simulate
on physical (implemented architecture) level

• Preservation of desired properties

• Absence of violations of such properties (e.g., ab-
sence of single points of failure under the physical
mapping

134 www.the-autonomous.com

STEP #4: MARKOV ANALYSIS
The overall failure rate needs to be determined and proven to be within a
set target, usually around ASIL D metrics (10-⁸ /h) (compare section 2.2.7).
For complex, fault-tolerant architectures with redundant paths like the
ones described in this report, one cannot simply add up the failure rates
of the constituents but must consider their interaction. This amounts to de-
scribing the overall system’s states (like normal operation, degradation
etc.) and their transition probabilities (derived from the individual compo-
nent failure rates) in a Markov model and calculating the resulting overall
failure rate.

In addition to these supporting steps, the relevant standards like ISO
26262 and established engineering practices prescribe extensive testing
and simulation for verifying the correctness, reliability and availability of
complex AD systems and algorithms. For the use case of an SAE Level 4
Highway Pilot, these shall only be intensified compared to systems of les-
ser criticality. In this context, fault injection campaigns are of particular
value and can challenge many design properties, such as sufficient inde-
pendence of redundant channels, fault tolerance of arbiters and resili-
ence of the overall systems against arbitrary faults in its components.

Develop-
ment step Goal Description

Markov
analysis

Evaluate system
failure rate

Model system states and transition probabilities from in-
dividual component failures; calculate overall failure
rate.

• Calculate overall failure rate, considering FuSa
and SOTIF

• Meet target failure rate

Develop-
ment step Goal Description

Sufficient
indepen-
dence
analysis

Ensure system
availability and
correctness

Systematically analyze HW and SW architecture on
platform and application level, including communicati-
on network.

• Prove absence of common cause faults in red-
undant elements, on platform and application
level

• Prove absence of cascading faults across the
ADI architecture

135www.the-autonomous.com

OUTLOOK
The further direction of the Safety & Architecture Working Group is still un-
der discussion among the member companies of The Autonomous, and
some of the potential work packages could be as follows:

• Extend the analysis to further use cases, such as SAE L5 or an Urban
Pilot function, and see if and to what extent the evaluation of the re-
lative merits and weaknesses of each architecture changes.

• Extend the analysis to other architectures that recently appeared in
the market and literature, such as self-checking pairs and the “Safety
Shell” architecture [30].

• Deepen the analysis to include more implementation aspects, e.g.,
to propose concrete HW and SW mappings and suitable ECU and
networking architectures.

• Extend the report with practical guidelines for implementation tasks,
such as how to check on and ensure logical completeness and con-
sistency of an architecture, or how to evaluate and quantify the inde-
pendence of computation channels.

• Work out an “architecture evaluation guideline” from the experiences
gained throughout the presented work, to help the industry commu-
nity apply a similar framework in their concrete development pro-
jects.

Whatever the future direction, working on this report has been a hugely
gratifying experience for the team, and we are confident that it provides
value to the community of industry players and academic institutions wor-
king on automated driving systems.

136 www.the-autonomous.com

TERMINOLOGY
TERMINOLOGY FROM STANDARDS AND
LITERATURE

The “Safety & Architecture” WG makes use of the terminology laid out in
different industry standards and literature. Please refer to the listed stan-
dards for all terms not specifically defined in the following.

A small number of terms have been added as new definitions to clarify the
scope of the “Safety & Architecture” WG.

For terms related to systems, faults, and failures, we use the following (in
order of preference):

• ISO 26262:2018 “Road vehicles – Functional safety” [2]

• IEC 61508:2010 “Functional safety of electrical/electronic/programm-
able safety-related systems” [47]

• ISO 21448:2022 “Road vehicles – Safety of the Intended Functionality” [3]

• Algirdas Avizienis, J-C. Laprie, Brian Randell, and Carl Landwehr.
“Basic concepts and taxonomy of dependable and secure compu-
ting.” IEEE transactions on dependable and secure computing 1, no. 1
(2004) [1]

For terms related to AD, we use the following (in order of preference):

• ISO/SAE PAS 22736 “Taxonomy and definitions for terms related to
driving automation systems for on-road motor vehicles” [48] (based
on SAE J3016_202104 [7])

• BSI PAS 1883:2020 “Operational Design Domain (ODD) taxonomy for
an automated driving system (ADS) - Specification” [49]

Please also refer to the relevant databases maintained by ISO and IEC:

• https://www.iso.org/obp/ui

• http://www.electropedia.org/

137www.the-autonomous.com

Term Reference or definition Notes

AD Intelligence computational unit between the
sensors and actuators

Architecture ISO 26262:2018-1

Automated Driving
System (ADS) ISO/SAE PAS 22736

Availability ISO 26262:2018-1

Cascading failures ISO 26262:2018-1

• In literature, one will often find the fol-
lowing differentiation: Failures of red-
undant systems due to systematic
weaknesses of the architecture are
caused by common cause initiators
(CCI) and coupling faults (= ISO 26262
cascading faults). In many standards
this differentiation is not done, e.g., IEC
61508-6:2010, Annex D: The term CCF
is often used to cover all kinds of de-
pendent failures as it is done in this an-
nex. According to an Exida 2010 Safe-
tronic paper, ISO 26262 is the first
standard to distinguish the two distinct
phenomena.

Channel IEC 61508:2010-4

Common cause
failure (CCF) ISO 26262:2018-1

Common mode
failure (CMF) ISO 26262:2018-1

Conceptual
architecture

An abstract, high-level architecture
that does not specify technical
(e.g., HW, SW) components.

• This is similar to the “system architectu-
ral design” required as an external in-
put in ISO 26262:2018-3.

Controllability ISO 26262:2018-1

Coupling factors ISO 26262:2018-1

Dependability Avizienis, TR 2004-47

The paper defines this as encompassing
the following attributes (quote):
• availability: readiness for correct ser-

vice [see also ISO 26262:2018-1]
• reliability: continuity of correct service
• safety: absence of catastrophic conse-

quences on the user(s) and the envi-
ronment [see also ISO 26262:2018-1]

• integrity: absence of improper system
alterations

• maintainability: ability to undergo mo-
difications, and repairs

Dependent failures ISO 26262:2018-1

Dependent failure
initiator (DFI) ISO 26262:2018-1

138 www.the-autonomous.com

Term Reference or definition Notes

Diagnostic coverage
(DC) ISO 26262:2018-1

• In the context of ISO 26262, this only
covers HW faults. For our purposes, we
use the same term to cover SW faults
as well, which goes hand in hand with
the decision to quantify (systematic)
SW faults.

Diversity ISO 26262:2018-1

Dual-point failure ISO 26262:2018-1

Dual-point fault ISO 26262:2018-1

Dynamic Driving
Task (DDT) ISO/SAE PAS 22736

DDT fallback ISO/SAE PAS 22736

Dynamic elements BSI PAS 1883

Ego vehicle BSI PAS 1883 • Used instead of “subject vehicle”.

Element ISO 26262:2018-1

Emergent behavior
Behavior that cannot be attributed to one
individual system alone, but arises in the
interplay of various systems, components
etc.

Environmental
conditions BSI PAS 1883

Error ISO 26262:2018-1

Failure ISO 26262:2018-1

Fault ISO 26262:2018-1

Fault-Containment
Unit (FCU)

A Fault Containment Unit is a set of
subsystems that shares one or more
common resources that can be af-
fected by a single fault and is assu-
med to fail independently from
other FCUs. [50]

• The definition is very strict in the sense
that any potential dependent failure
(detected during the analysis of de-
pendent failures) between supposed
FCUs would prove that they (by defini-
tion) are actually not FCUs.

• The definition is interpreted to mean
that potential dependent failures may
exist between FCUs defined in the ar-
chitecture, but have to be mitigated by
either reducing the probability of the
root cause, reducing the coupling fac-
tors, or controlling their effects.

Formal verification ISO 26262:2018-1

Functional
insufficiency ISO 21448:2022

Insufficiency of specification or perfor-
mance insufficiency. Both terms are also
defined in ISO 21448:2022.

Interface Avizienis, TR 2004-47 [1]
• The paper distinguishes between the

“service interface” and the “use inter-
face”.

Item ISO 26262:2018-1

Hazard ISO 26262:2018-1

139www.the-autonomous.com

Term Reference or definition Notes

Malfunction ISO 26262:2018-1

• Malfunctions can arise due to multiple
causes, e.g., faults, performance limi-
tations [see also ISO 21448:2022], or
unexpected behavior [see also ISO
21448:2022].

Mapping
The process of transforming a con-
ceptual architecture into a techni-
cal HW and/or SW architecture.

• The same conceptual architecture can
be mapped to many different HW / SW
solutions.

• Certain considerations need to be ap-
plied during the mapping to ensure
properties of the conceptual architec-
ture are not lost.

Minimal Risk
Condition (MRC) ISO/SAE PAS 22736

Minimal Risk Ma-
neuver (MRM) BSI PAS 1883

• In a highway ODD, there are multiple
possible MRMs, e.g., reducing speed
and continuing to the next rest stop,
pulling over to the emergency lane, or
coming to a controlled stop in the cur-
rent lane. These differ by their inherent
safety and the capability and timefra-
me necessary to execute them.

Misuse ISO 21448:2022

An example of a direct misuse is the acti-
vation of a highway pilot in an urban set-
ting. An example of an indirect misuse is a
driver falling asleep and not monitoring an
L2 system during operation.

Monitor ISO/SAE PAS 22736

Object and Event
Detection and
Response (OEDR)

ISO/SAE PAS 22736

Operational Design
Domain (ODD) ISO/SAE PAS 22736

Output insufficiency ISO 21448:2022

Passenger car ISO 26262:2018-1

Performance
limitation ISO 21448:2022

Random hardware
fault ISO 26262:2018-1

Request to intervene ISO/SAE PAS 22736

Routine/normal
operation ISO/SAE PAS 22736

Safety ISO 26262:2018-1

Safety architecture ISO 26262:2018-1

Safety case ISO 26262:2018-1

Safety Element out
of Context (SEooC) ISO 26262:2018-1

140 www.the-autonomous.com

Term Reference or definition Notes

Safety goal ISO 26262:2018-1

Scenery BSI PAS 1883

Service Avizienis, TR 2004-47

Severity ISO 26262:2018-1

System ISO 26262:2018-1

Systematic fault ISO 26262:2018-1

Triggering condition ISO 21448:2022

Validation ISO 26262:2018-1

Verification ISO 26262:2018-1

Vulnerable Road
User (VRU) BSI PAS 1883

141www.the-autonomous.com

REFERENCES
[1] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, "Basic concepts

and taxonomy of dependable and secure computing," IEEE Transacti-
ons on Dependable and Secure Computing, vol. 1, no. 1, 2004.

[2] ISO, "ISO 26262:2018 Road vehicles - Functional safety," 2018.

[3] ISO, "ISO 21448:2022 Road vehicles - Safety of the Intended Functio-
nality," 2022.

[4] Aptiv; Audi; Baidu; BMW; Continental; Daimler; FCA; Here; Infineon; In-
tel; Volkswagen, "Safety First for Automated Driving," 2019.

[5] H.-P. Schoener and J. Antona-Makoshi, "Testing for Tactical Safety of
Autonomous Vehicles," in 30th Aachen Colloquium Sustainable Mobi-
lity, Aachen, Germany, 2021.

[6] ISO, "ISO/SAE 21434:2021 Road vehicles - Cybersecurity engineering,"
2021.

[7] SAE, "SAE J3016 Taxonomy and Definitions for Terms Related to On-
Road Motor Vehicle Automated Driving Systems," 2021.

[8] Economic Commission for Europe - Inland Transport Committee, "Pro-
posal for a new UN Regulation on uniform provisions concerning the
approval of vehicles with regards to Automated Lane Keeping Sys-
tem," 2020.

[9] H. Egerth and S. Yantis, "Visual Attention: Control, Representation and
Time Course," Annual Review of Psychology, vol. 48, pp. 269-297, 1997.

[10] D. Dvorak, "NASA Study on Flight Software Complexity," Jet Propulsion
Laboratory, California Institute of Technology, 2009.

[11] J. McDermid and T. Kelly, "Software in safety critical systems: achieve-
ment and prediction," Nuclear Future, vol. 2, no. 3, pp. 140-146, 2006.

[12] J. Gray, "Why do computers fail and what can be done about it?,"
Tandem Computer Corporation, 1985.

[13] Wikipedia, "Wikipedia entry on Heisenbug," [Online]. Available: htt-
ps://en.wikipedia.org/wiki/Heisenbug. [Accessed 31 07 2023].

[14] G. Li, S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer and S. Keck-
ler, "Understanding error propagation in deep learning neural net-
works (DNN) accelerators and applications," in Proceedings of the In-
ternational Conference for High Performance Computing,
Networking, Storage and Analysis, 2017.

142 www.the-autonomous.com

[15] N. Kalra and S. Paddock, "Driving to Safety: How Many Miles of Dri-
ving Would It Take to Demonstrate Autonomous Vehicle Reliability?,"
Transportation Research Part A: Policy and Practice, vol. 94, pp. 182-
193, 2016.

[16] R. Young, "Automated driving system safety: Miles for 95% confidence
in "vision zero"," SAE International Journal of Advances and Current
Practices in Mobility, vol. 2, no. 6, pp. 3454-3480, 2020.

[17] X. Zhang, J. Tao, M. Törngren, J. Gaspar Sanchez, M. Rusyadi Ramli, X.
Tao, M. Gyllenhammar, F. Wotawa, N. Mohan, M. Nica and H. Felbin-
ger, "Finding Critical Scenarios for Automated Driving Systems: A Syste-
matic Mapping Study," IEEE Transactions on Software Engineering,
vol. 49, no. 3, pp. 991-1026, 2023.

[18] Statistisches Bundesamt (Destatis), "Verkehrsunfälle 2018," 2020.

[19] P. Koushki and F. Balghunaim, "Determination and Analysis of Unre-
ported Road Accidents in Riyadh, Saudi Arabia," Journal of King Saud
University - Engineering Sciences, vol. 3, pp. 101-118, 1991.

[20] SAE, "SAE ARP4754A Guidelines for Development of Civil Aircraft and
Systems," 2010.

[21] SAE, "SAE ARP4761 Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment," 1996.

[22] Y. Fu, J. Seemann, C. Hanselaar, T. Beurskens, A. Terechko, E. Silvas
and W. Heemels, "Characterization and Mitigation of Insufficiencies in
Automated Driving Systems," in The 27th International Conference on
the Enhanced Safety of Vehicles (ESV), Yokohama, Japan, 2023.

[23] UL, "ANSI/UL 4600 (Ed. 3) Evaluation of Autonomous Products," 2023.

[24] SAE, "SAE J3018 Safety-Relevant Guidance for On-Road Testing of Pro-
totype Automated Driving System (ADS)-Operated Vehicles," 2020.

[25] S. Shalev-Shwartz, S. Shammah and A. Shashua, "On a Formal Model
of Safe and Scalable Self-driving Cars," Mobileye, 2017.

[26] H. Kopetz, "An Architecture for Driving Automation," 2020. [Online].
Available: http://www.the- autonomous.com.

[27] J. Lala, in First IFIP Workshop on Intelligent Vehicle Dependability & Se-
curity, 2021.

[28] Statistik Austria, "Straßenverkehrsunfälle mit Personenschaden, Jahres-
ergebnisse 2018," 2019.

[29] P. Liu, R. Yang and Z. Xu, "How Safe Is Safe Enough for Self-Driving Ve-
hicles?," Risk Analysis, vol. 39, no. 2, pp. 315-325, 2018.

143www.the-autonomous.com

[30] C. Hanselaar, E. Silvas, A. Terechko and W. Heemels, "Detection and
Mitigation of Functional Insufficiencies in Autonomous Vehicles: The
Safety Shell," in IEEE 25th International Conference on Intelligent
Transportation Systems (ITSC), 2022.

[31] A. Armoush, "Design patterns for safety-critical embedded systems,"
PhD thesis, RWTH Aachen University, 2010.

[32] Audi, "zFAS the Brain of piloted Driving and Parking (nVIDIA GPU
Technology Conference)," 2015. [Online]. Available: https://on-de-
mand.gputechconf.com/gtc/2015/presentation/S5637-Matthias- Ru-
dolph.pdf.

[33] Audi, "Audi A8 - Central driver assistance controller (zFAS)," 7 2017.
[Online]. Available:
https://www.audi-technology-portal.de/en/electrics-electronics/dri-
ver-assistant-systems/audi-a8- central-driver-assistance-controller-
zfas. [Accessed 21 11 2023].

[34] Tesla Inc., "Tesla AI Day 2022," 01 10 2022. [Online]. Available:
https://www.youtube.com/watch?v=ODSJsviD_SU&ab_channel=Tesla.

[35] AutoPilot Review, "Tesla Hardware 4 – Full Details and Latest News,"
2023. [Online]. Available:
https://www.autopilotreview.com/tesla-hardware-4-rolling-out-to-
new-vehicles/.

[36] M. L. Shooman, "Reliability of computer systems and networks: fault to-
lerance, analysis and design," in N-Modular Redundancy, Wiley-Inter-
science, 2002, pp. 145-201.

[37] H. Kopetz, Real Time Systems - Design Principles for Distributed Em-
bedded Applications, Springer Verlag, 2012.

[38] P. S. Shalev-Shwartz. [Online]. Available: https://www.youtube.com/
watch?v=ViGL0z1BULs. [Accessed 22 08 2022].

[39] BMW Group, "Safety Assessment Report," 2020.

[40] J. Yoshida, "EE Times," 29 04 2020. [Online]. Available: https://www.
eetimes.com/unveiled-bmws- scalable-av-architecture/.

[41] M. Wagner, J. Ray, A. Kane and P. Koopman, "A safety architecture for
autonomous vehicles". Patent EP3400676B1, 2017.

[42] T. Bijlsma, A. Buriachevskyi, A. Frigerio, Y. Fu, K. Goossens, A. O. Örs, P.
J. van der Perk, A. Terechko and B. Vermeulen, "A Distributed Safety
Mechanism using Middleware and Hypervisors for Autonomous Vehic-
les," in 2020 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), Grenoble, 2020.

144 www.the-autonomous.com

[43] Y. Fu, A. Terechko, J. Groote and A. Saberi, "A formally verified fail-ope-
rational safety concept for automated driving," SAE Intl., pp. 7-21, 17
Jan 2022.

[44] Audi AG; BMW AG; Daimler AG; Porsche AG; VW AG, "Standardized
E-GAS Monitoring Concept for Gasoline and Diesel Engine Control
Units," 2013.

[45] M. Staron, Automotive Software Architectures: An Introduction, Sprin-
ger Cham, 2021.

[46] ISO, "ISO 24089 Road vehicles - Software update engineering," 2023.

[47] IEC, "IEC 61508:2010 Functional safety of electrical/electronic/pro-
grammable safety-related systems," 2010.

[48] ISO, "ISO/SAE PAS 22736:2021 Taxonomy and definitions for terms re-
lated to driving automation systems for on-road motor vehicles," 2021.

[49] BSI, "BSI PAS 1883:2020 Operational Design Domain (ODD) taxonomy
for an automated driving system (ADS) - Specification," 2020.

[50] B. Frömel, "Fault Tolerance (lecture notes)," [Online]. Available:
https://ti.tuwien.ac.at/cps/teaching/courses/cpsesfvo/slides-
ws14/04_ft.pdf#:~:text=A%20Fault%20Containment%20Un-
it%20%28FCU%29%20is%20a%20set,and%20 is%20assume-
d%20to%20fail%20independently%20from%20other.

[51] Projekt Pegasus, "Projekt Pegasus," [Online]. Available: https://www.
pegasusprojekt.de/en/pegasus- method.

[52] M. Scholtes, L. Westhofen, L. Turner, K. Lotto, M. Schuldes, H. Weber,
N. Wagener, C. Neurohr, M. Bollmann, F. Körtke, J. Hiller, M. Hoss, J.
Bock and L. Eckstein, "6-Layer Model for a Structured Description and
Categorization of Urban Traffic and Environment," IEEE Access, vol. 9,
pp. 59131 - 59147, 2021.

[53] D. Powell, "Failure Mode Assumptions and Assumption Coverage," in
Predictably Dependable Computing Systems, Springer, 1995, pp. 123-
140.

[54] F. Cristian, "Understanding Fault-Tolerant Distributed Systems," Com-
munications of the ACM, vol. 34, pp. 56-78, 1993.

[55] N. Mohan, M. Törngren and V. Izosimov, "Challenges in architecting
fully automated driving; With an emphasis on heavy commercial ve-
hicles," in Workshop on Automotive Systems/Software Architectures,
2016.

[56] B. Littlewood and L. Strigini, "Validation of Ultrahigh Dependability for

145www.the-autonomous.com

Software-Based Systems," Comm. ACM, vol. 36, pp. 69-80, 1993.

[57] H. Kopetz, Simplicity is Complex - Foundations of Cyber-Physical Sys-
tem Design, Springer Verlag, 2019. [58] H. Kopetz, "Emergence in Cy-
ber-Physical System-of-Systems," in Cyber-Physical System-of-Systems,

[58] H. Kopetz, "Emergence in Cyber-Physical System-of-Systems," in Cy-
ber-Physical System-of-Systems, Springer Verlag, 2016, pp. 73-96.

[59] A. Chou, J. Yang, B. Chelf, S. Hallem and D. Engler, "An Empirical Study
of Operating System Errors," in Proceedings of the ACM SOPS 2001,
2001.

[60] Waymo, "Waymo Public Road Safety Performance Data," 2020.

[61] NHTSA, "Pre-Crash Scenario Typology for Crash Avoidance Re-
search," 2007.

[62] American Psychological Association, "Multitasking Switching Cost,"
[Online]. Available:
https://www.apa.org/research/action/multitask. [Accessed 22 May
2006].

[63] Automotive Electronics Council, "AEC-Q100:Rev-H Failure Mechanism
Based Stress Test Qualification For Integrated Circuits," 2014.

[64] P. Koopman, "Simplified Proposal for Vehicle Automation Modes," 31
January 2022. [Online]. Available: https://safeautonomy.blogspot.
com/2022/01/simplified-proposal-for-vehicle.html.

[65] California DMV, "Disengagement Reports," 2021. [Online]. Available:
https://www.dmv.ca.gov/portal/vehicle-industry-services/autono-
mous-vehicles/disengagement- reports/. [Accessed 14 07 2023].

[66] C. Hanselaar, E. Silvas, A. Terechko and W. Heemels, "Detection and
Mitigation of Functional Insufficiencies in Autonomous Vehicles: The
Safety Shell," in 2022 IEEE 25th International Conference on Intelligent
Transportation Systems (ITSC), Macau, 2023.

[67] B. Kaiser, B. Monajemi Nejad, D. Kusche and H. Schulte, "Systematic
design and validation of degradation cascades for safety-relevant
systems," in The 2nd International Conference on Engineering Sci-
ences and Technologies, 2017.

[68] S. Poledna, "Course: Dependable Computer Systems Part 5: Failure
modes and models," 2007. [Online]. Available: https://ti.tuwien.ac.at/
cps/teaching/courses/dependable_systems-ss08/dcs_slides/dcs-
2007- p5.pdf. [Accessed 17 10 2023].

146 www.the-autonomous.com

LIST OF ABBREVIATIONS
Abbreviation Meaning

ACM Association for Computing Machinery

AD Automated / Autonomous Driving

ADI Automated Driving Intelligence

ADS Automated Driving System

AV Automated Vehicle

BIST Built-In Self-Test

CCDSS Computer-Controlled Driving Sub-System (in channel-wise DCF architecture)

CCF Common Cause Failure

CCI Common Cause Initiator

CEHSS Critical Event-Handling Sub-System (in channel-wise DCF architecture)

CSM Controller Safety Mechanism (in DSM architecture)

DC Diagnostic Coverage

DCF Doer / Checker / Fallback

DDT Dynamic Driving Task

DFA Dependent Failure Analysis

DFI Dependent Failure Initiator

DSM Distributed Safety Mechanism

ECU Electronic Control Unit

EOTI Emergency Operation Time Interval

FCU Fault-Containment Unit

FMEA Failure Mode and Effects Analysis

FSM Function Safety Monitor (in DSM architecture)

FTA Fault Tree Analysis

FTDSS Fault-Tolerant Decision Sub-System (in channel-wise DCF architecture)

FUN Function (in the DSM architecture)

HARA Hazard Analysis and Risk Assessment

HUD Heads-Up Display

HW Hardware

HWP Highway Pilot

IEC International Electrotechnical Commission

IEEE Institute for Electrical and Electronics Engineers

IMU Inertial measurement Unit

ISO International Organization for Standardization

147www.the-autonomous.com

Abbreviation Meaning

KPI Key Performance Indicator

MRC Minimal Risk Condition

MRM Minimal Risk Maneuver

MSS Monitoring Sub-System (in channel-wise DCF architecture)

MTTF Mean Time to Failure

NHTSA National Highway Traffic Safety Administration

ODD Operational Design Domain

OEDR Object and Event Detection and Response

OEM Original Equipment Manufacturer

OS Operating System

SAE Society of Automotive Engineers

SaRA Safety-Related Availability

SEooC Safety Element out of Context

SEU Single-Event Upset

SoC System-on-Chip

SOTIF Safety of the Intended Functionality

SUV Sports Utility Vehicle

SW Software

VRU Vulnerable Road User

VSM Vehicle Safety Mechanism (in the DSM architecture)

V2X Vehicle-to-anything (vehicle, infrastructure)

WG Working Group

148 www.the-autonomous.com

APPENDICES
APPENDIX A: ODD OUTLINE OF REFERENCE AD
USE CASE

Followed taxonomy

The HWP feature should only be active inside its defined Operational De-
sign Domain (ODD), which is given by a set of conditions regarding its
environment. We follow BSI PAS 1883:2020 [49], which mostly covers the
same attributes as the formalism (6 layers) of Project Pegasus [51] [52]. The
HWP feature should refuse to activate if these are not met and should, if
these are no longer met, prompt the driver to take back control within a
convenient time span and in the meantime ensure safety, e.g., by bringing
the vehicle to a safe stop. The ability to execute an MRM must be maintai-
ned even outside the ODD.

Scenery

ZONES
Attribute Sub-attribute (1) Sub-attribute (2) Capability

Zones

Geo-fenced areas Yes, as designated by OEM

Traffic management zones No

School zones No

Regions or states Yes, as designated by OEM

Interference zones
Dense foliage Yes (not close to driving path)

Tall buildings Yes

149www.the-autonomous.com

DRIVABLE AREA
Attribute Sub-attribute (1) Sub-attribute (2) Sub-attribute (3) Capability

Drivable
area

Drivable area
type

Motorways (high-
ways) Yes, maximum 130 km/h

Radial roads No

Distributor roads No

Minor roads No

Slip roads No

Parking No

Shared space No

Drivable area
geometry

Horizontal plane
Straight roads Yes

Curves Yes, maximum 1/100 m

Transverse plane
(cross-section)

Divided / undivi-
ded Divided

Pavement No

Barrier on the
edge

Types of lanes to-
gether

Longitudinal pla-
ne (vertical)

Up-slope Yes, maximum +4%

Down-slope Yes, maximum -4%

Level plane Yes

Lane specifica-
tion

Lane dimensions Minimum 3.5 m

Lane marking Yes, in good condition

Lane type

Bus lane
No (may be present, but
must not be used during nor-
mal operation)

Traffic lane Yes

Cycle lane No

Tram lane No

Emergency lane
No (may be present, but
must not be used during nor-
mal operation)

Other special
purpose lane Yes, carpool lanes

Number of lanes Yes, minimum 2 lanes per di-
rection

Direction of travel Right-hand traffic Yes

Left-hand traffic No

150 www.the-autonomous.com

Additional assumptions:

• Changed road markings or reduced lane width are not supported.

• The speed limit is appropriate for the curve radius and slope of the
road such that the entire stopping distance is visible without occlusi-
ons (in the absence of other vehicles).

Attribute Sub-attribute (1) Sub-attribute (2) Sub-attribute (3) Capability

Drivable
area

Drivable area
signs

Information
Variable Yes, full-time and temporary

Uniform Yes, full-time and temporary

Regulatory
Variable Yes, full-time and temporary

Uniform Yes, full-time and temporary

Warning
Variable Yes, full-time and temporary

Uniform Yes, full-time and temporary

Drivable area
edge

Line markers Yes

Shoulder (paved
or gravel) Yes

Shoulder (grass) Yes

Solid barriers Yes, obligatory on left side

Temporary line
markers No

None No

Drivable area
surface

Surface type

Asphalt Yes

Concrete Yes

Cobblestone No

Gravel No

Granite setts No

Surface features

Cracks Yes, minor only

Potholes No, not in significant density

Ruts or swells Yes, minor only

Damage caused
by weather Yes, minor only

Damage caused
by traffic Yes, minor only

Induced conditi-
ons

Icy No, not to a significant extent

Flooded No

Mirage Yes

Snow No

Standing water No

Wet Yes

Contaminated Yes, minor only

151www.the-autonomous.com

JUNCTIONS

ROAD STRUCTURES
Attribute Sub-attribute (1) Capability

Special structures

Automatic access control No

Bridges Yes

Pedestrian crossings No

Rail crossings No

Tunnels Yes, with separate driving directions

Toll plaza No

Fixed road struc-
tures

Buildings No

Streetlights Yes, but not required

Street furniture No

Vegetation No

Temporary road
structures

Construction site detours No

Refuse collection No

Road works No

Road signage No

Attribute Sub-attribute (1) Sub-attribute (2) Sub-attribute (3) Capability

Junctions

Roundabout No

Intersection

T-junction No

Staggered No

Y-junction On-ramp and
off-ramp No (except driving by)

Other No

Crossroads No

Grade-separated Interchange No

Other No

152 www.the-autonomous.com

ENVIRONMENTAL CONDITIONS

Additional assumptions:

• Not being warned of major road or traffic conditions is uncommon.
We assume that the road layout is known ahead of time and that un-
expectedly encountering challenging road or traffic conditions is un-
common as authorities are in charge of keeping the road in an ac-

Attribute Sub-attribute (1) Sub-attribute (2) Capability

Weather

Wind
Calm - fresh breeze (<10.7 m/s) Yes

Strong breeze (>10.7 m/s) - hurrica-
ne force No

Rainfall
Light rain (<2.5 mm/h) Yes

Moderate rain (>2.5 mm/h) -
cloudburst No

Snowfall
Light snow (>1 km visibility) Yes

Moderate snow (<1 km visibility) -
heavy snow No

Particulates

Marine No, not to significantly
reduced visibility

Mist and fog No, not to significantly
reduced visibility

Sand and dust No, not to significantly
reduced visibility

Smoke and pollution No, not to significantly
reduced visibility

Volcanic ash No, not to significantly
reduced visibility

Illumination

Day Yes

Night or low-ambi-
ent

No, not to significantly
reduced illumination

Cloudiness Clear - overcast Yes

Artificial illuminati-
on Yes

Connectivity

Communication

V2V, V2I Yes, at least intermittently

Cellular Yes, at least intermittently

Satellite No

DSRC and ITS-G5 No

Positioning

Galileo Yes, at least intermittently

GLONASS Yes, at least intermittently

GPS Yes, at least intermittently

153www.the-autonomous.com

ceptable state of repair and/or informing traffic participants (via
signs, map data, and/or V2X) if this is not the case.

• HD Maps are available for all supported highway segments.

DYNAMIC ELEMENTS

Additional assumptions:

• All human traffic participants are aware that the highway is a re-
stricted environment and act accordingly (responsibly).

Attribute Sub-attribute (1) Sub-attribute (2) Capability

Traffic

Density of agents
Dense traffic (including stop & go) Yes

Free-flow traffic (including no lead
vehicle) Yes

Volume of traffic

Flow rate

Agent type

Cars Yes

Buses and trucks Yes

Motorbikes Yes

VRUs (pedestrians, bicyclists) Yes, to a very limited de-
gree

Animals Yes, to a very limited de-
gree

Minor static obstacles (lost load,
debris, etc.) Yes

Major static obstacles (lost load,
trees, rocks, etc.)

Yes, to a very limited de-
gree

Special vehicles Yes

Subject ve-
hicle (ego
vehicle)

Behavior capabili-
ties

Ego vehicle speed 0-130 km/h

Lane change Yes

Lane merge Yes

Vehicle

All sensors and actuators in wor-
king condition Yes

Sensor or actuator non-operational No, except during MRM

Superficial body damage Yes

Moderate - major body damage No

Door or window open No

Low fuel or charge level No

Passengers

Driver not in driver seat No

Unbelted passenger No

Driver asleep or incapacitated No

154 www.the-autonomous.com

APPENDIX B: DETAILED DESCRIPTION OF THE
CHANNEL-WISE DCF ARCHITECTURE

This appendix provides additional details on the channel-wise Doer /
Checker / Fallback conceptual system architecture as described in section
3.5.1.

STRUCTURAL DETAILS

The subsystems in the channel-wise DCF architecture differ in their as-
sumptions, failure modes, and estimated necessary Mean Time to Failure
(MTTF, see Table 6). The interfaces between subsystems are described in
Table 7 and data types in Table 8.

TABLE 6: COMPARISON OF SUBSYSTEMS IN THE CHANNEL-WISE DCF CONCEPTUAL
SYSTEM ARCHITECTURE.

Subsystem Assumptions applying to
failure mode

Failure mode assumpti-
on

Estimated ne-
cessary MTTF

Doer / CCDSS

• It is assumed that the
vehicle is in opera-
ting condition.

• It is assumed that the
ODD of the item is
respected.

Authentication-detecta-
ble Byzantine [68]²⁶ 1000 h

Checker / MSS Authentication-detecta-
ble Byzantine 1000 h

Fallback /
CEHSS

Authentication-detecta-
ble Byzantine 1000 demands²⁷

Redundancy
management /
FTDSS

• It is assumed that the
HW of the FTDSS is
correct²⁸.

• It is assumed that the
SW of the FTDSS is
correct.

²⁶ Failure mode assumptions range (from most to least restrictive) [68]: fail-stop, crash, omission (fail-
silent), performance, authentication-detectable Byzantine, Byzantine (fail-arbitrary). Byzantine failures
are fully arbitrary and can appear different to different receivers. Authentication-detectable Byzantine
failures have the restriction that they cannot spoof other systems’ messages.
²⁷ The Fallback is not continuously in control of the vehicle and only acts on demand. Therefore, its MTTF
is not given per time, but per demands.
²⁸ To achieve fault tolerance, the FTDSS consists of two instances: FTDSS A and FTDSS B.

155www.the-autonomous.com

TABLE 7: INTERFACES IN THE CHANNEL-WISE DCF CONCEPTUAL SYSTEM
ARCHITECTURE. EXTERNAL INTERFACES OF THE AD INTELLIGENCE ARE SHADED
ORANGE.

Sender Receiver Data type Periodicity

1 Sensor System CCDSS SensorData
Sensor-dependent,
event-driven (~10-100
ms)

2 Sensor System MSS SensorData Sensor-dependent

3 Sensor System CEHSS SensorData Sensor-dependent

4 Diagnostics
System CCDSS SystemStatus Main cycle, time-driven

(~50 ms)

5 UI System CCDSS UserInput Event-driven

6 CCDSS MSS ActuatorData Main cycle

7 CCDSS FTDSS A ActuatorData Main cycle

8 CCDSS FTDSS B ActuatorData Main cycle

9 CCDSS UI System UserInformation Main cycle

10 CCDSS Sensor System SensorControl Main cycle

11 CCDSS Diagnostics System DiagnosticsData Main cycle

12 MSS FTDSS A ValidationResults Main cycle

13 MSS FTDSS B ValidationResults Main cycle

14 MSS CCDSS ValidationResults Main cycle

15 MSS Diagnostics System DiagnosticsData Main cycle

16 CEHSS FTDSS A ActuatorData Main cycle

17 CEHSS FTDSS B ActuatorData Main cycle

18 CEHSS Sensor System SensorControl Main cycle

19 CEHSS Diagnostics System DiagnosticsData Main cycle

20 FTDSS A Actuator System ActuatorData Main cycle

21 FTDSS A MSS ActuatorData Main cycle

22 FTDSS A MSS ActuatorData Main cycle

23 FTDSS A Diagnostics System DiagnosticsData Main cycle

24 FTDSS B Actuator System ActuatorData Main cycle

25 FTDSS B MSS ActuatorData Main cycle

26 FTDSS B MSS ActuatorData Main cycle

27 FTDSS B Diagnostics System DiagnosticsData Main cycle

156 www.the-autonomous.com

TABLE 8: DATA TYPES IN THE CHANNEL-WISE DCF CONCEPTUAL SYSTEM
ARCHITECTURE.

BEHAVIORAL DETAILS

The rough function of the different subsystems in the channel-wise DCF
architecture is described in pseudo-code in Table 9.

TABLE 9: PSEUDO-CODE FOR THE CHANNEL-WISE DCF CONCEPTUAL SYSTEM
ARCHITECTURE WITH INTERFACE IDS IN PARENTHESES.

Subsystem States Behavior

CCDSS

• Nominal

• Degraded

• Internal fault

Receive sensor data (#1)
Receive system status (#4)
Receive validation results (#14) from last cycle
IF (more than N out of last M CEHSS validation results are FALSE or not re-
ceived) OR (system status NOK)
 # too frequent transient faults are treated as a permanent fault
 Go to degraded state
IF (nominal state)
 Plan nominal trajectory
ELIF (degraded state)
 Plan degraded trajectory
IF (NOT internal fault state)
 Generate corresponding actuator setpoints
 Send trajectory and setpoints (#6, #7, #8)
Report subsystem status (#11)
IF (internal fault in execution or communication detected)
 Go to internal fault state (remain silent)

Data type Interfaces Periodicity

1 SensorData 1, 2, 3

2 SystemStatus 4

3 UserInput 5

4 ActuatorData

6, 7, 8, 16,
17, 20, 21,
22, 24, 25,
26

• Trajectory (timed sequence of waypoints
for next ~1-3 sec)

• Actuator setpoints (timed sequence of
desired accelerations / decelerations and
curvatures for next ~1-3 sec)

• Priority of producing subsystem (CCDSS >
CEHSS)

• Incremental iteration counter

5 UserInformation 9

6 SensorControl 10, 18

7 DiagnosticsData 11, 15, 19,
23, 27

8 ValidationResults 12, 13, 14

• CCDSS validation result (true / false)

• CEHSS validation result (true / false)

• Incremental iteration counter

157www.the-autonomous.com

Subsystem States Behavior

MSS
• Functional

• Internal fault

Receive sensor data (#2)
Generate environment model
Receive actuator data for CCDSS (#6, #21, #25) and CEHSS (#22, #26)
IF (functional state)
 IF (all CCDSS sets are received) AND (all CCDSS sets are identical)
 # this can catch some Byzantine faults
 Run CCDSS evaluation (TRUE / FALSE)
 ELSE
 CCDSS evaluation is FALSE
 IF (all CEHSS sets are received) AND (all CEHSS sets are identical)
 Run CEHSS evaluation (TRUE / FALSE)
 ELSE
 CEHSS evaluation is FALSE
 Send validation results (#12, #13)
Report subsystem status (#15)
IF (internal fault in execution or communication detected)
 Go to internal fault state (remain silent)

CEHSS
• Functional

• Internal fault

Receive sensor data (#3)
IF (functional state)
 Plan degraded trajectory
 Generate corresponding actuator setpoints
 Send trajectory and setpoints (#16, #17)
Report subsystem status (#19)
IF (internal fault in execution or communication detected)
 Go to internal fault state (remain silent)

FTDSS A
• Functional

• Internal fault

Receive CCDSS actuator data (#7)
Receive CEHSS actuator data (#16)
Forward CCDSS actuator data (#21)
Forward CEHSS actuator data (#22)
Receive validation results (#12)
IF (CCDSS set received)
 IF (CEHSS set received)
 IF (CCDSS set valid)
 Select CCDSS set
 ELSE
 # transient faults can be masked
 Select CEHSS set
 ELSE
 Select CCDSS set
ELSE
 IF (CEHSS set received)
 Select CEHSS set
Forward selected actuator data (#20)
Report subsystem status (#23)
IF (internal fault in execution or communication detected)
 Go to internal fault state (remain silent)

FTDSS B
• Functional

• Internal fault

Same as for FTDSS B, except using interfaces (#8, #13, #17, #24, #25, #26,
#27) instead of (#7, #12, #16, #20, #21, #22, #23).

158 www.the-autonomous.com

Figure 22: Activity diagram for the channel-wise Doer / Checker / Fallback
conceptual system architecture.

159www.the-autonomous.com

APPENDIX C: SAMPLE ANALYSIS POINTS RE-
GARDING DIFFERENT CONCEPTUAL ARCHITEC-
TURE PATTERNS

This appendix provides additional details on the design principle D7: Mit-
igation of common-cause hazards, section 1.5.2.

The dimensions introduced in Figure 6 can be exemplified by conceptual-
ly applying them to a selection of architecture patterns. Functional
complexity is indicated by the depth of the slice, while the implemented
capabilities’ coverage of an operational domain is indicated by the sur-
face area. Holes are therefore representative of an absence of capability.

Figure 23: Channel dimensioning as per conceptual pattern of selected architecture candidates

Given the selected architecture patterns in Figure 23, the following relati-
ve observations can be made:

• Single-channel architectures can be expected to have significantly
complex implementations to meet the functional requirements of ad-
vanced use cases.

▪ Errors and output insufficiency within the implementation is not
complemented or offset by the capability of another channel; a
fallback capability is not available.

• TMR (triple-modular-redundancy) architectures typically offer redun-
dancy of the same functionality, hence the equal depth of each slice
and diverse location of errors to prevent unavailability of the function.

▪ Nevertheless, the redundant functions may all contain the
same output insufficiencies and therefore offer no prevention of
common-cause functional insufficiency hazards.

▪ Even the diverse implementation of the functionality aiming to
achieve non-common cause output insufficiencies could
struggle with inexact agreement when handling the individual
channel outputs.

160 www.the-autonomous.com

▪ A fallback capability beyond the nominal functionality within
the intended ODD is not available, as indicated by the equal
areas of each slice.

• Doer-checker-fallback architectures typically propose the diverse im-
plementation of a complex performance channel and its comple-
mentary checker channel, hence the unequal depth of the slices and
diverse location of holes.

▪ A fallback capability beyond the nominal functionality is
offered by a basic channel capable of offering minimum-risk-
maneuver in conditions beyond the ODD; the area of which
could be considered analogous to something like the Target
Operational Domain (TOD).

161www.the-autonomous.com

162 www.the-autonomous.com

	Authors
	Reviewers
	Contents
	Version History
	Executive Summary
	Abstraction level and reference use case
	System requirements, design constraints and design principles
	Candidate Architectures
	Architecture Evaluation Methodology, Criteria, and Findings
	Implementation Considerations
	Introduction and purpose
	The Autonomous
	Working Group Safety & Architecture
	Purpose and structure of this document
	1 Background and premises
	1.1 Reference AD use case
	1.1.1 Motivation
	1.1.2 Choice of reference AD use case
	1.1.3 Functionality provided to user
	1.1.1 Functionality provided to user
	1.1.4 Feature activation, deactivation, and requests to intervene
	1.1.5 Degraded functionality
	1.2 System boundary
	1.2.1 Overview
	1.2.2 Sensor System
	1.2.3 Actuator System (receivers)
	1.2.4 UI System
	1.2.5 Diagnostics System
	1.3 System requirements
	1.2 System requirements
	S1: AD Intelligence output timeliness
	S2: AD Intelligence output availability
	S3: AD Intelligence output correctness
	S4: AD Intelligence output consistency
	S5: Perception malfunction detection
	S6: AD Intelligence diagnostics
	1.4 Abstraction level
	1.5 General constraints and design principles
	1.5.1 General constraints
	1.5.2 Design principles
	2 Architecture evaluation criteria
	2.1 Architectural decisions and processes
	2.1.1 System owner persona
	1.1.2 Architecture design process and decisions
	2.2 General requirements
	2.2.1 Automotive quality
	2.2.2 Adherence to standards
	2.2.3 Field monitoring and update process
	2.2.4 Comfort and functionality
	2.2.5 Modularity and maintainability
	2.2.6 Physical implementation
	2.2.7 Safety
	2.3 Availability
	2.3.1 Availability of the system
	2.3.2 Diagnostics scheme
	2.3.3 Degradation scheme
	2.4 Reliability
	2.4.1 Availability of the nominal functionality
	2.5 Cybersecurity
	2.5.1 Interactions between subsystems
	2.5.2 Interactions with external systems
	2.6 Scalability
	2.6.1 Scalability towards higher availability
	2.6.2 Scalability towards different offering levels
	2.7 Simplicity
	2.7.1 Number, complexity, and performance of subsystems
	2.7.2 Required diversity
	2.7.3 Complexity of validation
	2.8 Safety of the intended functionality (SOTIF)
	2.8.1 Support to accommodate functional insufficiencies
	2.8.2 Support to manage operational conditions
	2.9 Table of evaluation criteria
	3 Candidate architectures
	3.1 Collection process
	3.2 Overview of architectural design patterns
	3.2.1 Arbitration and Voting
	3.2.2 Agreement
	3.2.3 Doer/Checker (or Control/Monitor)
	3.2.4 Active and Hot Stand-By (or Duplex pattern)
	3.3 Monolithic architectures
	3.3.1 Single-channel architecture
	3.4 Symmetric architectures
	3.4.1 Majority voting architecture
	3.4.2 Cross-checking pair architecture
	3.5 Asymmetric architectures
	3.5.1 Channel-wise Doer / Checker / Fallback (DCF) architecture
	3.5.2 Layer-wise Doer / Checker / Fallback architecture
	3.5.3 Distributed Safety Mechanism architecture
	4 Architecture evaluation
	4.1 Evaluation process
	4.2 Generic evaluation
	4.2.1 Evaluation of the single-channel architecture
	4.2.2 Evaluation of the majority voting (M-oo-N) architecture
	4.2.3 Evaluation of the channel-wise DCF architecture
	4.2.4 Evaluation of the layer-wise DCF architecture
	4.2.5 Evaluation of the DSM architecture
	4.3 Specific evaluation in the context of the reference AD use case
	4.3.1 Relevance of the evaluation criteria in the context of the reference AD use case
	4.3.2 Assessment of the candidate architectures under the evaluation criteria
	4.3.3 Evaluation summary
	5 Implementation considerations
	5.1 HW mapping considerations
	5.1.1 High availability and vehicle operating states
	5.1.2 Common Cause Initiators
	5.1.3 Clock, Power, Reset, Debug and Test Failures
	5.2 SW mapping considerations
	5.2.1 Software Architectural Styles
	5.2.2 Property of Technical Independence
	5.2.3 Software Reuse
	5.2.4 Software Updates
	5.2.5 Real-Time Operating Systems (RTOS) and Middleware
	5.2.6 Machine Learning and Data-Driven Approaches
	5.2.7 Data Management
	5.2.8 Tool Qualification
	5.3 Safety argumentation
	5.3.1 Applicable Safety Standards
	5.3.2 ISO 26262 (Functional Safety) considerations for the ADI implementation
	5.3.3 ISO 21448 (SOTIF) considerations for the ADI implementation
	5.3.4 Proposed supporting steps for the ADI implementation
	Outlook
	Terminology
	Terminology from standards and literature
	References
	List of abbreviations
	Appendices
	Appendix A: ODD outline of reference AD use case
	Zones
	Drivable area
	Junctions
	Road structures
	Environmental conditions
	Dynamic elements
	Appendix B: Detailed description of the channel-wise DCF architecture
	Structural details
	Behavioral details
	Appendix C: Sample analysis points regarding different conceptual architecture patterns

