
1www.the-autonomous.com

Safe Automated Driving: 
Requirements and 
Architectures

Full Report 



2 www.the-autonomous.com



3www.the-autonomous.com

AUTHORS

REVIEWERS

Gabi Escuela
gabi.escuela@baselabs.de

Bernhard Kaiser

Andrei Terechko 

Udo Dannebaum
udo.dannebaum@infineon.com

Jens Rosenbusch
jens.rosenbusch@infineon.com

Nahla Ben Mosbeh 

Chaitanya Shinde

Ayhan Mehmed

Christoph Schulze 

Shailesh More

Lucas Fryzek 

Matthew Storr 

The Working Group Safety & Architecture would like to thank the reviewers of the report for their 
valuable input and feedback. 

Neil Stroud
neil.stroud@coreavi.com

Philip Koopman 

Jan Toennemann 

Martin Törngren
martint@kth.se

Kazuhito Takenaka 
k.takenaka@eu.denso.com

Justin-Kiyoshi Tiele 
j.tiele@eu.denso.com

Jan Reich 
Rasmus Adler 
Daniel Schneider

Georg Niedrist
georg.niedrist@tttech-auto.com

Moritz Antlanger
moritz.antlanger@tttech-auto.com

Christian Mangold 
christian.mangold@tttech-auto.com

Friedrich Reisenberger
friedrich.reisenberger@tttech-auto.com



4 www.the-autonomous.com

CONTENTS
Authors ............................................................................................................3

Reviewers .........................................................................................................3

Contents ........................................................................................................... 4

Version History .................................................................................................. 6

Executive Summary ............................................................................................. 7
Abstraction level and reference use case .............................................................................. 7
System requirements, design constraints and design principles ............................................ 8
Candidate Architectures ....................................................................................................... 9
Architecture Evaluation Methodology, Criteria, and Findings .............................................. 12
Implementation Considerations ........................................................................................... 13

Introduction and purpose ....................................................................................14
The Autonomous .................................................................................................................. 14
Working Group Safety & Architecture ................................................................................... 14
Purpose and structure of this document ............................................................................... 15

1 Background and premises .................................................................................18
1.1 Reference AD use case ....................................................................................................18
1.2 System boundary ............................................................................................................ 23
1.3 System requirements ...................................................................................................... 25
1.4 Abstraction level ............................................................................................................ 26
1.5 General constraints and design principles ......................................................................27

2 Architecture evaluation criteria ........................................................................ 35
2.1 Architectural decisions and processes ............................................................................ 35
2.2 General requirements ....................................................................................................37
2.3 Availability .................................................................................................................... 39
2.4 Reliability ...................................................................................................................... 40
2.5 Cybersecurity ................................................................................................................. 41
2.6 Scalability ..................................................................................................................... 42
2.7 Simplicity ....................................................................................................................... 43
2.8 Safety of the intended functionality (SOTIF) ................................................................... 44
2.9 Table of evaluation criteria ........................................................................................... 45

3 Candidate architectures .................................................................................. 48
3.1 Collection process .......................................................................................................... 48
3.2 Overview of architectural design patterns .................................................................... 49
3.3 Monolithic architectures ................................................................................................. 51
3.4 Symmetric architectures ................................................................................................. 54
3.5 Asymmetric architectures ............................................................................................... 56

4 Architecture evaluation ................................................................................... 68
4.1 Evaluation process ......................................................................................................... 68
4.2 Generic evaluation ....................................................................................................... 69
4.3 Specific evaluation in the context of the reference AD use case .................................... 89



5www.the-autonomous.com

5 Implementation considerations ......................................................................... 98
5.1 HW mapping considerations ......................................................................................... 98
5.2 SW mapping considerations ........................................................................................ 100
5.3 Safety argumentation ................................................................................................... 103

Outlook ..........................................................................................................110

Terminology .................................................................................................... 111
Terminology from standards and literature ......................................................................... 111

References ......................................................................................................116

List of abbreviations ........................................................................................ 120

Appendices .................................................................................................... 122
Appendix A: ODD outline of reference AD use case ........................................................... 122
Appendix B: Detailed description of the channel-wise DCF architecture ............................ 128
Appendix C: Sample analysis points regarding different conceptual architecture patterns 133



6 www.the-autonomous.com

VERSION HISTORY
Version Date Revision description

1.0 01.12.2023 Initial release



7www.the-autonomous.com

EXECUTIVE SUMMARY
The Autonomous is an initiative and open platform bringing together leading executives and 
experts of the mobility ecosystem to align on subjects relevant to the safety of autonomous 
driving (AD); in its Safety & Architecture Working Group, members of international research 
institutes and industrial companies came together to investigate what the system-level 
conceptual architecture of an automated vehicle could look like, in order to address the 
functional and safety challenges of automated driving. 

This report was compiled from June 2021 to December 2023 in three major report increments 
that were accompanied by external reviewers from industry and academic experts.  
Our work is structured as follows: we start by outlining the reference use case of an SAE L4 
Highway Pilot, derive key system requirements, and establish general constraints and 
established design principles for implementing such a use case in an AD system. We continue 
with candidate architectures from market and literature research and derive their properties. 
Finally, we compare the architectures with respect to a set of criteria that we consider crucial 
(such as system availability, robustness, and scalability) and conclude with development 
considerations and implementation hints.

The intended readers are system owners who make architectural decisions and ensure 
consistency on many different abstraction levels, from high-level conceptual architectures to 
low-level physical implementations. Our intention is to support them in making such decisions 
and building up a safety argumentation.

ABSTRACTION LEVEL AND REFERENCE USE CASE

It is commonly understood and accepted that the development of a safe automated driving 
system for complex driving tasks is a big challenge. Even when developed to the highest 
standards, complex HW and SW elements will exhibit faults that can materialize in an arbitrary 
way. Still, the overall autonomous driving system needs to tolerate such faults and keep up 
operation at least for a minimum time frame – i.e., it needs to be fail-degraded. A well-chosen 
architecture is indispensable to manage the complexity of autonomous driving systems and to 
ensure fault tolerance in an effective and efficient way.

For our analysis, we have chosen what we call the conceptual system architecture level: we 
consider the system as a set of well-
encapsulated subsystems that can comprise up 
to an entire processing channel, or at least a 
dedicated subset of the overall functionality. 

As our reference use case, we chose an SAE 
Level 4 Highway Pilot to act as a backdrop for 
compiling assumptions and deriving system 
requirements and design principles applicable 
to conceptual system architectures. Such a 
feature, which is expected within the next few 
years, will need to deal with complex traffic 
situations and will necessitate non-trivial system 
architectures due to high availability 
requirements and complexity. 

SAE Level 4 130
km/h
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SYSTEM REQUIREMENTS, DESIGN CONSTRAINTS 
AND DESIGN PRINCIPLES
The Safety & Architecture Working Group focuses on a system providing AD functionality, which 
we call the Automated Driving Intelligence (ADI). This system covers all cognitive tasks 
previously performed by the driver. A simplified representation is shown below, illustrating the 
four other systems the ADI is connected to, as well as the elements that „close the loop“ with the 
physical environment.

A set of key system requirements (summarized in the table below) should be applied to the ADI 
to ensure the safety of commands to the actuators. Besides the expected timeliness, 
correctness, and consistency of commands, their availability is highly safety-relevant for an SAE 
L4 function. Additionally, an ADI architecture shall foresee self-diagnostic mechanisms and 
shall support detecting and handling functional insufficiencies (including, but not limited to the 
perception functions).  

When coming up with conceptual system architectures intended to satisfy these system 
requirements, technological limitations constrain how high-reliability systems can be designed, 
built, and tested using realistic HW and SW components. Such general constraints need to be 
addressed by an architecture for automated driving, e.g.: it is impossible to avoid design faults 
and single-event upsets in large and complex monolithic systems, and it is impossible to 
achieve high availability by testing or to specify all edges cases that an AD function must cope 
with. 

In addition, well-established practices should be respected in a sound conceptual system 
architecture. We identify a number of such design principles, e.g., using well-encapsulated 

S1 ADI output timeliness

S2 ADI output availability

S3 ADI output correctness

S4 ADI output consistency

S5 Perception malfunction detection

S6 ADI diagnostics
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independent subsystems (“Fault Containment Units”, FCUs), applying diversity and 
redundancy, preventing emergent behavior by limiting interactions between subsystems, and 
mitigating hazards by adopting the Swiss cheese model.

CANDIDATE ARCHITECTURES
From industry publications, academic papers, and patent publications we have identified 
candidate architectures and grouped them into three basic categories of conceptual system 
architectures:

1. MONOLITHIC ARCHITECTURES 
present the status quo for SAE L2 systems and are a natural basis 
for incremental development to L3 systems. 

2. SYMMETRIC ARCHITECTURES 
rely on multiple channels providing the same or similar 
functions, often with some voting mechanism for arbitration.

3. ASYMMETRIC ARCHITECTURES 
employ asymmetric decompositions to reduce the complexity of 
some subsystems, e.g., via Doer / Checker or Active / Hot Stand-
By patterns.
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These architectures employ several underlying patterns:

The Arbitration pattern manages redundancy by deciding (e.g., voting) between equal 
channels. The Agreement pattern is similar, but without an external arbiter.

The Doer / Checker pattern asymmetrically decomposes (for correctness) a channel into a 
Doer performing the intended function and a Checker approving it. 

The Active / Hot Stand-By pattern asymmetrically decomposes (for availability) into a prefer-
red Main channel and – if that is not available – a Fallback channel. 

A representative of the monolithic architectures is the Single-Channel architecture, where a 
single ECU performs all tasks of the Automated Driving function, i.e., processes the sensor data 
into a consistent environment model, generates trajectories and, finally, set points for the 
actuators. Examples of this architecture are the AUDI zFAS System for an SAE L3 Traffic Jam Pilot 
(2017) or, more recently, Tesla’s “Full Self Driving” (FSD), as far as can be judged from available 
documentation, or monolithic end-to-end AI systems. At least for the zFAS, availability 
requirements are relaxed compared to an L4 Highway Pilot, and the system does not need to 
provide complex fallback functionality in case of a fault – hence it can be backed up by a 
different ECU outside the AD system.

The Majority Voting architecture as a representative of the symmetric architectures implements 
a number of channels (three or more), each of which can perform the full nominal function. The 
voter compares (exactly or inexactly) the channels’ results and forwards the majority opinion to 
the actuators. If all three results differ, no decision can be made. To achieve fault tolerance, 
multiple instances of the voter may be necessary. 

Arbiter (Switch)

Hot Stand-By

Active
output

output

Arbiter (Decider)

Checker

Doer
output

yes/no

Subsystem 2 Arbiter (Voter)

...

Subsystem 1
output

output
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The first of the considered asymmetric architectures is the Channel-Wise Doer/Checker/
Fallback architecture, where a Doer performs the nominal driving function and can resemble 
an SAE L2 system, while a Fallback performs only Minimal Risk Maneuvers. A Checker validates 
both the Doer’s and the Fallback’s output. A Selector receives the Checker’s verdict and 
forwards either the trajectory from the Doer or from the Fallback to the actuators. 
Doer/Checker/Fallback are complex subsystems, and each of them forms an FCU that can fail 
arbitrarily and independently. They are implemented in a diverse way to minimize common-
cause failures, to ensure sufficient independence. The Selector is simple, has low performance 
requirements, and can be fully verified to preclude systematic faults. To achieve fault tolerance, 
it consists of two identical instances.

Another asymmetric architecture is the Layer-Wise Doer/Checker/Fallback, essentially a 
multi-channel approach with at least one primary and one safing channel, which provides a 
degraded mode of operation in case the primary channel fails. Each channel consists of Doer/
Checker pairs, arranged in multiple layers of the Sense-Plan-Act model. A Priority Selector 
determines the output to be sent to the actuators, depending on the states of the channels.
The Priority Selector is a high safety integrity component, simpler than the Checkers. It must 
continue to operate in the presence of failures to deliver either the primary or the safing output, 
or to trigger an emergency stop. It may fail silently so long as that failure triggers an emergency 
(blind) stop.

As a final asymmetric example, we study the Distributed Safety Mechanism architecture, which 
can be seen as a more complex, distributed variant of the Doer/Checker/Fallback approach. 
The architecture is composed of three channels, each of them containing safety monitors – a 
Nominal Channel, consisting of the function itself and controlled by a Function Monitor, an 
Emergency Channel, which is controlled by a Controller Safety Mechanism, and a Safety 
Channel, which is controlled by a Vehicle Safety Mechanism. The Function Monitor is checking 
for SOTIF issues, the Controller Safety Mechanism is responsible for monitoring all the function 
controllers (including hardware and software platforms) and the Vehicle Safety Mechanism. 

The Vehicle Safety Mechanism is responsible for monitoring the communication networks and 
the Controller Safety Mechanism. It can send control commands to the vehicle actuators in case 
of comfort or safe stop, by using independent sensor data. 
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ARCHITECTURE EVALUATION METHODOLOGY, 
CRITERIA, AND FINDINGS
We evaluate the presented architectures with respect to several key criteria: 

• Availability: to what extent would the architecture support the fail-operational property, 
i.e., enable safe operation even in the case of unavoidable electronic or software faults?

• Reliability: would continuity of the nominal functionality be well supported, to help ensure 
a positive user experience, e.g., by avoiding function degradation?

• Cybersecurity: would the architecture be susceptible to security threats, or would it 
support resilience measures against attacks?

• Scalability: to what extent would cost-efficient downscaling to lower SAE levels (for vehicle 
options), or upscaling to higher SAE levels (for future enhancements), be supported?

• Simplicity: would the architecture be conceptually simple, to support modular 
development, verification, and validation?

• Safety of the Intended Functionality: would the architecture help ensure robustness and 
safe operation in the presence of functional insufficiencies and unavoidable edge cases? 

For the evaluation itself, we proceed in three steps: To form an unbiased basis for the 
evaluation, we start with a generic evaluation of each architecture, by listing observations 
(properties of each architecture) related to each criterion. Next, we evaluate the relative 
significance of the above criteria for the selected use case of an SAE L4 Highway Pilot. Finally, 
we directly compare the architectures, considering the observed properties from the generic 
evaluation and inferring merits or weaknesses with respect to each evaluation criterion, and 
qualitatively ranking them under that criterion.

As a result, it turns out that the asymmetric architectures are generally preferable to 
symmetric ones. By virtue of their inherent diversity of computational streams, they exhibit more 

SOTIF

Support to accommodate 
functional insufficiencies

Support to manage 
operational conditions

Simplicity

Number, complexity and 
performance of subsystems

Required diversity

Complexity of validation

Availability

Availability of the system

Degradation Scheme
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Reliability

Availability of the nominal 
functionality

Cybersecurity

Interactions between 
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availability
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robustness with respect to availability, cybersecurity, and SOTIF because the channels 
complement each other and tend to mutually compensate their potential weaknesses. The 
asymmetric architectures also offer more options with respect to scalability, as omitting 
channels quite naturally leads to lower SAE level functionality, and higher levels can be 
reached by adding channels. Superficially, they might appear more complex and less reliable 
(in the sense of keeping the intended functionality) than symmetric architectures. However, 
their diversity actually facilitates modular development and independent verification of the 
channels, which in turn is expected to lead to lower development costs and enhanced 
availability.

The symmetric architectures, such as voting approaches, are seen as highly susceptible to 
common cause deficiencies that might impact all channels at the same time – be it from the 
functional safety, SOTIF, or even the cybersecurity perspective. If this problem is addressed by 
heterogeneous channel implementations (e.g., different chipsets), then the feasibility of voting 
is questionable since channels might come to different but equally valid solutions. Finally, the 
monolithic single-channel architecture is not seen as a feasible solution: it does not fulfill any of 
the criteria without additional internal redundancy and supervision mechanisms that are 
introduced during implementation. This would make it evolve into one of the other 
architectures.

IMPLEMENTATION CONSIDERATIONS
For further refinement of the conceptual system architecture into combined hardware/software 
solutions with redundant channels, we need to consider dependent failures of the elements. In 
other words, sufficient independence of the channels (which includes freedom from 
interference), and the absence of single points of failure need to be ensured. We discuss 
dependent failure initiators and provide hints on how to overcome them.

Similarly, we consider selected topics related to the further refinement of the conceptual system 
architecture into a software safety concept. This includes a discussion on different software 
architectural styles – depending on the use case – as well as common safety measures.

To achieve a sound safety argumentation for the chosen architectures, we refer to the relevant 
safety standards, in particular ISO 26262 and ISO 21448. In addition, we propose advanced 
methods like formal verification on the architecture level and for the logical-to-physical 
mapping, as well as Markov modeling to quantify the overall system availability, to meet an 
ASIL D target.
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INTRODUCTION AND 
PURPOSE
THE AUTONOMOUS
The Autonomous is the global community shaping the future of safe autonomous mobility. 
Initiated by TTTech Auto in 2019, The Autonomous is an open platform building an ecosystem 
of all actors involved in the development of safe autonomous mobility. Ecosystem partners 
range from car manufacturers, technology suppliers and regulatory authorities to disruptors, 
thought leaders, academia, and government institutions. The goal of The Autonomous is to 
generate new knowledge and technological solutions in the field of autonomous mobility, thus 
accelerating the transition to market readiness and series development of safe self-driving 
vehicles. To achieve this, The Autonomous has put in place two strategic streams:

1. Event Stream – facilitates discussions and networking for leading executives and experts 
from the autonomous mobility ecosystem.

2. Innovation Stream – facilitates cooperation across the industry to work on global reference 
solutions for safety challenges. These reference solutions conform to relevant standards 
and will facilitate the adoption of safe autonomous mobility on a global scale. As part of 
the Innovation Stream, The Autonomous launches and facilitates Working Groups and 
Expert Circles in order to develop pre-competitive concepts, concrete technical solutions, 
best practices, and recommendations in key areas of autonomous driving – from E/E 
architectures and artificial intelligence to regulatory frameworks and societal acceptance. 

The findings of The Autonomous Working Groups are presented yearly at The Autonomous 
Main Event. 

WORKING GROUP SAFETY & ARCHITECTURE
The first initiated Working Group of the Innovation Stream of The Autonomous is the one on 
“Safety and Architecture”: International research institutes and industry leaders come together 
to address the fundamental question of what the conceptual system architecture of an 
automated vehicle (SAE level 4 and higher) should look like, i.e., how the system’s partitioning 
into computational streams, for instance for safety and redundancy purposes, could be 
performed (for further explanations, see section 1.4). The present report produced by the 
Working Group “Safety & Architecture” addresses this topic.

It is commonly understood and accepted that the development and implementation of a 
failure-free automated driving system for complex driving tasks is an extremely tough 
challenge. Even having been developed to the highest standards, complex HW and SW 
elements can exhibit malfunctions that can materialize in an arbitrary way. Still, the overall 
autonomous driving system needs to tolerate these and keep up operation at least for a defined 
time frame – i.e., needs to be fail-operational or at least fail-degraded. Regarding faults, this 
study generally concerns how to achieve a dependable computational system architecture 
and is thus not limited to faults like the ones caused by a lack of functional safety or to 
malfunctions due to a lack of “safety of the intended functionality”. A good summary of 
dependability aspects that need be considered can be found in [1].

The chosen level of conceptual representation is on the one hand sufficiently specific to be 
useful as a reference and on the other hand sufficiently generic to allow for different 
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implementations. More details on this conceptual representation will be given in section 1.4 - 
Abstraction level. This report focuses on the computational unit between the sensors and 
actuators which will be called “Automated Driving Intelligence” [55]1 (ADI), see Figure 1. This 
includes sensory processing, fusion, trajectory finding and decision making, but excludes raw 
data sensors and the actuators. Detailed hardware and software architectures are topics for 
potential follow-up activities of the Working Group after this report.

Figure 1: Automated Driving Intelligence (ADI)

PURPOSE AND STRUCTURE OF THIS DOCUMENT

Architecture and design occur on multiple different abstraction levels (see Figure 2). It lies 
within the responsibility of “system owners”, whom we consider the intended readers of this 
document, to ensure a consistent design across all such levels. System owners (see also section 
2.1.1 - System owner persona) may work for OEMs, mobility companies, or their suppliers and 
need to make architectural decisions both on a high, abstract level and on a lower, 
implementation level (see also section 2.1.2 - Architecture design process and decisions).

Figure 2: Ensuring consistency between architectures on different abstraction levels.
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This document is intended to support system owners in making high-level architectural 
decisions and mapping these to low-level implementations. It aims to provide a structured 
analysis of high-level architectures in the Automated Driving (AD) context, as well as 
supportive arguments for demonstrating that crucial requirements are satisfied and important 
KPIs are well met.

This document is structured as follows (see also Figure 3):

• In section 1 - Background and premises, we define the context in which we look at high-
level system architectures.

▪ We start by outlining a reference AD feature that captures the challenges regarding 
safety and availability. For this, we chose an assumed version of an SAE L4 Highway 
Pilot feature (see section 1.1).

▪ The reference AD feature is assumed to be provided by an AD system. The system 
boundary of this “AD Intelligence” is described in section 1.2.

▪ Based on these, we then derive high-level system requirements for the “AD 
Intelligence”, with a focus on safety and availability (see section 1.3).

▪ The architectural abstraction level that we consider is described in detail in section 1.4.
▪ Finally, we also collect general constraints and design principles relevant to system 

architectures within our chosen context and on our chosen abstraction level (see 
section 1.5). 

• In section 2 - Architecture evaluation criteria, we define evaluation criteria relevant to 
high-level system architectures.

▪ In order to choose evaluation criteria relevant to our intended readers, we start by 
describing the architectural choices they may need to make (see section 2.1).

▪ Many attributes of a well-made AD system do not directly depend on the high-level 
architecture. We thus summarize these attributes and assume that they are covered 
(see section 2.2).

▪ Attributes that are more closely linked to the choice of high-level system architecture 
are collected in sections 2.3 to 2.8 and summarized in tabular form in section 2.9. 
Each of these attributes is broken down into multiple evaluation criteria (and 
associated key questions) that we later apply in the architecture evaluation.

• In section 3 - Candidate architectures, we collect and describe different high-level system 
architectures.

▪ We start by describing the process we used to collect candidate high-level system 
architectures (see section 3.1).

▪ Since some of these share certain basic principles, we chose to extract these and 
describe their intention and mechanism in a generic way (see section 3.2).

▪ The six candidate conceptual system architectures are clustered in three major 
groups and described in a comparable way in sections 3.3, 3.4, and 3.5.

• In section 4 - Architecture evaluation, we evaluate the collected conceptual system 
architecture candidates.

• Our evaluation methodology is described in section 4.1.

• We use the evaluation criteria defined earlier to make a series of general observations on 
each candidate architecture (see section 4.2). These are not specific to an AD use case.

• This is then followed up by considering these observations in the context of our reference 
AD use case (see section 4.3).

• In section 5 - Implementation considerations, we provide considerations for mapping 
conceptual system architectures to specific HW and SW architectures.

• Considerations for mapping a conceptual system architecture to a physical HW architec-
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ture are collected in section 5.1.

• Considerations for mapping a conceptual system architecture to a physical SW architec-
ture are collected in section 5.2.

• Finally, the process for constructing a safety argumentation is outlined in section 5.3.

Figure 3: Structure of this document.
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1 BACKGROUND AND 
PREMISES
The requirements, general constraints, and design principles as introduced here relate to a 
system of interest, referred to as the ADI (recall Figure 1), and more specifically, to the compu-
tational system architecture of the ADI. Ensuring the safety of automated driving requires a sys-
tem safety perspective that takes the AD intelligence, the vehicle platform, the behavior of sur-
rounding actors as well as the traffic environment into account, including the full set of 
responsibilities previously assumed by the driver. The work described in this report does not 
take on this entire grand challenge, but rather focuses on architectural aspects of the AD Intel-
ligence and their contributions to safety. 

With the overall goal to propose and evaluate architectures for AD systems, a main emphasis 
is placed on meeting appropriate functional safety requirements, with considerations of system 
and software complexity, and hardware reliability (referring to ISO 26262 [2]). With the intro-
duction of advanced external perception and machine learning, additional safety hazards 
must be addressed for automated driving, as traditionally, functional safety standards have 
assumed that “requirements are known” and “nominal operation” with no software or electro-
nics failures, is safe. This has led to new standards, such as ISO 21448 “Safety of Intended Func-
tionality” (SOTIF) [3], which attempts to address these challenges. SOTIF is part of the conside-
rations for this work regarding causes of failures and qualitative aspects of diversity (further 
elaborated in section 1.5.1 - General ).

For highly Automated Vehicles (AVs), the increasing complexity and risks of failures lead to 
open issues, including what constitutes safe road behavior and what measures are needed to 
assure a “positive risk balance” [4] such that an AV would at least perform better than an ave-
rage driver. These are topics being treated in ongoing standardization work, such as ISO/AWI 
TS 5083—safety of automated driving systems. A positive risk balance is considered for the ar-
chitectural work in terms of, for example, reliability goals. Behavioral aspects such as tactical 
safety [5] are beyond the scope of this work.

Cybersecurity will also be key for automated vehicles and their relation to safety, as manifested 
by the new standards like ISO/SAE 21434:2021 [6] for automotive. Cybersecurity aspects are, 
however, not covered extensively in this release, partly due to the chosen abstraction level. 
Some aspects of cybersecurity that have an indirect impact on security considerations will be 
covered through a few evaluation criteria, see further section 2.5 - Cybersecurity.

1.1 REFERENCE AD USE CASE
1.1.1 MOTIVATION
This section outlines the reference AD use case targeted by the "Safety & Architecture" Working 
Group of The Autonomous. This may later be supplemented by additional AD use cases in the 
second iteration of the Working Group (see Outlook).

This reference AD use case shall serve the following purposes:

• As an input for defining reasonable assumed requirements (see section 1.3 - System requi-
rements). In ISO 26262, safety-related requirements are ultimately derived from item-spe-
cific safety goals, e.g., that the system shall avoid collisions and loss of vehicle control.

• As an input for establishing what level of algorithmic complexity is required to perceive 
varied environments and handle different and dynamic traffic scenarios.
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• As an input for defining general assumptions (see section 1.5 - General constraints and 
design principles).

• As an input for defining and quantifying dependability goals.

This reference AD use case may help with the following purposes:

• To derive a rough estimate of what computational resources are required.

• To derive a rough estimate of currently achievable failure rates for the computational re-
sources as well as the estimated rate of hazardous behavior of the intended functionality² 
from software (application and infrastructure code).

• To refine requirements that are related to vehicle-level use cases and scenarios into more 
detailed requirements on the algorithm level, e.g., perception, activation / deactivation, 
degradation, or warnings³.

Note: This reference AD use case is intended to give the reader a general understanding of 
what such a feature could look like. While some of these descriptions have direct relevance for 
architectural considerations later on (marked in bold font in the following reference AD use 
case sub-sections), many others merely serve as a background to outline the many different 
aspects and perspectives involved.

1.1.2 CHOICE OF REFERENCE AD USE CASE
At the moment, various OEMs are discussing a number of different AD use cases, each having 
different architectural implications. We have screened these on a high level according to sever-
al criteria to identify a suitable reference AD use case:

• Timeline
The reference AD use case should (likely) become technically and commercially feasible 
within the next 5-10 years.

• Complexity of the Operational Design Domain (ODD)
The reference AD use case should apply to an ODD of at least medium complexity. This 
implies that complex algorithms and high-performance hardware are necessary.

• System availability
The reference AD use case should have high integrity and availability requirements, i.e., 
require resilience against faults (fail-operational/fail-degraded). This implies that a non-
trivial conceptual system architecture is necessary to compensate for the weaknesses of 
complex algorithms and powerful hardware.

2 Malfunctioning behavior can arise due to faults (e.g., bugs), due to functional insufficiencies (e.g., environmental aspects neglected in the 
specifications), due to operational disturbances (e.g., environmental conditions), or due to misuse. In systems involving machine learning, this may 
also be caused by bad or biased training data. There are some empirical estimates for the number of undiscovered bugs per line of code remaining 
despite using proper development processes [10].
3 This may also include performance-related aspects such as timing, accuracy, and detection reliability.
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TABLE 1: LIST OF AD USE CASES UNDER DISCUSSION (NOT COMPREHENSIVE).

The AD use case we consider the most suitable (see Table 1) is an 
SAE Level 4 Highway Pilot (HWP) feature. This function is expec-
ted to be introduced between 2025 and 2028.

We explicitly target the “High Automation” level / “SAE L4” (accor-
ding to the classification scheme proposed by the Society of Auto-
motive Engineers [7]4) over SAE L3 (see also [8, 9]). This entails the 
following:

• The system assumes full responsibility for the Dynamic Driving Task (DDT) in all dimensi-
ons, i.e., the driver can be „hands-off“.

• The system assumes full responsibility for its own supervision, i.e., the driver can be „eyes-
off“ and „brain-off“.

• The system will never require the driver to take back control, which would be both difficult 
to achieve [9] and would also have a pronounced detrimental effect on the „quality time“ 
gained from an AD feature.

• The system may only request that the driver take back control within more than a few do-
zen seconds to allow a smooth transition to user-operated mode. If the driver does not 
take back control when asked to, the system needs to enter a safe state on its own.

If the AD system encounters a fault and/or if the driver does not respond to a request to interve-
ne (exact time frame subject to concrete system specifications), the vehicle will perform a DDT 
fallback operation. We assume that this consists of the execution of a Minimal Risk Maneuver 
(MRM) [7] to enter a Minimal Risk Condition (MRC), e.g., pulling over to the right side / emer-
gency lane and coming to a controlled stop or (if this is no longer feasible) coming to a control-
led stop in the current lane, but excludes recovery, i.e., the AD system does not attempt to con-
tinue driving without a full reset after entering the MRC. 

1.1.3 FUNCTIONALITY PROVIDED TO USER
In the following, we define an assumed version of a HWP feature, similar to proposals from 
different OEMs. These allow the driver of a passenger car (sedan, SUV, crossover, or similar 
vehicle with relatively simple vehicle dynamics) to take their eyes off the road and perform other 
tasks while on a highway, with the AD system performing the entire DDT (lateral and longitudi-
nal vehicle motion control and complete Object and Event Detection and Reaction (OEDR)) 
and assuming full responsibility.

AD use case Timeline ODD complexity System availability

Traffic Jam Pilot ●●●●● ●●○○○ ●●●○○

Highway Pilot ●●●●○ ●●●○○ ●●●●●

Mobility as a Service (MaaS) ●●●○○ ●●●●● ●●●○○

Valet Parking ●●●●○ ●●○○○ ●●○○○

Low-speed AD (shuttle) ●●●●○ ●●○○○ ●●○○○

SAE Level 4 130
km/h

4 These classification schemes are still evolving, which is why we consider a more detailed outline of the AD use case (including feature activation 
and deactivation) necessary.
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The Operational Design Domain (ODD) of the HWP feature is outlined in more detail in Appen-
dix A: ODD outline of reference AD use case.

1.1.4 FEATURE ACTIVATION, DEACTIVATION, AND REQUESTS TO INTERVENE

ID Statement

U1 The HWP feature supports lane keeping.

U2 The HWP feature supports lane changes.

U3 The HWP feature supports traffic jams (stop & go traffic).

U4 The HWP feature can be set to continue driving on the current highway.

U5 The HWP feature can be set to go to a target highway exit.

U6 The HWP feature supports speeds of up to 130 km/h.

U7 The HWP feature visually presents its status (e.g., off / on / malfunctioning) as well 
as its world model and motion plan to the passengers.

ID Statement

U8

We assume that “regular activation” of the HWP feature could proceed as follows:

• The driver presses the "activate HWP" button.

• The system checks that all conditions for its activation are fulfilled (see Appendix 
A: ODD outline of reference AD use case) and indicates the result to the driver.

• The system gradually offers more resistance to steering wheel and pedals. 

U9

We assume that “regular system-initiated deactivation” of the HWP feature could 
proceed as follows:

• The system visually represents the automated driving system’s world model, 
motion plan and diagnostics to the user to simplify the (requested) control 
takeover for the user.

• The system indicates that it is approaching a point where the conditions for 
activation will no longer be fulfilled (end of the mission, change of external 
circumstances, detected failure, etc.).

• The driver presses the "acknowledge deactivation" button.

• The system checks that the driver is capable of driving (attentive and hands 
on the steering wheel) and indicates the result to the driver.

• The system gradually offers less resistance to steering wheel and pedals.

• If the driver fails to resume control, the system executes an MRM when the 
conditions for activation are no longer fulfilled.

U10 We assume that “regular driver-initiated deactivation” of the HWP feature could pro-
ceed similarly to “regular system-initiated deactivation”, but without the first two steps. 

U11

We assume that “fast driver-initiated deactivation” of the HWP feature could pro-
ceed as follows:

• The driver puts their hands on the steering wheel and/or feet on the pedals.

• The driver overrides the resistance offered by the system.

• The system indicates to the driver that it has relinquished control.
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1.1.5 DEGRADED FUNCTIONALITY

Figure 4: State diagram of different operating modes.

ID Statement

U12

We assume that “driver-initiated emergency deactivation” of the HWP could pro-
ceed as follows:

• The driver presses the "pull over" button.

• The system indicates to the driver that it will come to a controlled stop.

• The system executes an MRM. 

ID Statement

U13 The HWP feature has a nominal mode (routine/normal operation), during which 
it is capable of executing the mission.

U14 The HWP feature has a degraded mode (see also Figure 4), during which it will 
execute an MRM (pulling over, controlled stop, or emergency stop) [7].

U15 The HWP feature will enter degraded mode if any part of the AD system encoun-
ters errors seen as critical to the ADI functionality or if the ODD is violated.

U16 After entering degraded mode (unable to continue mission), the HWP feature will 
not activate again without a full reboot.

U17
In degraded mode, the HWP feature will try to come to a controlled stop in 
(what is understood as) a safe enough location (i.e., emergency lane or right-
most lane). [First choice]

U18 If this is not possible, the HWP feature will try to come to a controlled stop in the 
current lane of travel. [Second choice]

U19 If this is not possible, the HWP feature will try to come to an emergency stop. [Third 
choice]

U20
The HWP feature does not have a limp-home mode, during which it is capable of 
continuing the mission with reduced functionality (e.g., reduced speed) and/or try 
to restore full functionality (e.g., partial reboot while continuing to drive).
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1.2 SYSTEM BOUNDARY
1.2.1 OVERVIEW
The Working Group „Safety & Architecture“ primarily considers a system providing AD functio-
nality, i.e., the Automated Driving Intelligence introduced previously (recall Figure 1). In this sec-
tion, we lay out the boundary of this AD Intelligence and its interactions with other systems out-
side this system boundary. Due to our focus on system conceptual architectures (as opposed to 
detailed SW or HW architectures), we only describe the data and control flow on interfaces 
and omit HW-related aspects such as concrete network topologies, power supply or cooling. 
Figure 4 shows such a layout, providing a simplified representation including the elements that 
“close the loops”, i.e., the physical vehicle and the human making use of the UI system.

Figure 5: AD Intelligence and its interfaces to surrounding systems.

The AD Intelligence is connected to four other systems (see Figure ), which are described in 
more detail in the following subsections. The main data flow is from the Sensor System to the AD 
Intelligence and then from the AD Intelligence to the Actuator System (receivers). The AD Intel-
ligence’s main service interface is to the Actuator System. The other service interfaces of the AD 
Intelligence are mainly for sensor control and diagnostics.

1.2.2 SENSOR SYSTEM
The Sensor System provides the main inputs to the AD Intelligence. It consists of a set of sensors 
and/or related ECUs (e.g., zonal controllers).

• The Sensor System provides measurement data from a sensor set (SensorData). This inter-
face must be capable of real-time behavior and must be fail-operational (e.g., redundant 
with absence of dependent failures, encompassing common cause and cascading failures).
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• The Sensor System also provides diagnostic information to the Diagnostics System (Dia-
gnosticsData).

• The Sensor System receives calibration and control data (SensorControl).

• The sensor set must be sufficient⁵ for the AD Intelligence to offer its service (nominal and 
degraded functionality). The sensor set comprises “outward-looking” sensors (e.g., radar, 
camera, lidar, or ultrasonics), “inward-looking” sensors (e.g., IMU), and digital informati-
on (e.g., V2X or HD Maps).

1.2.3 ACTUATOR SYSTEM (RECEIVERS)
The Actuator System is the consumer of the service provided by the AD Intelligence. It consists 
of a set of “receivers”, which may be actuator control ECUs and/or smart actuators.

• The Actuator System receives a set of setpoints (ActuatorData). This interface must be ca-
pable of real-time behavior and must be fail-operational. On the other hand, the Actuator 
System might be capable of fail-degraded operation.

• The Actuator System also provides diagnostic information to the Diagnostics System (Dia-
gnosticsData).

• The actuator set must be sufficient to control the vehicle even in the presence of a single 
fault.

1.2.4 UI SYSTEM
The UI System allows the user to control the AD Intelligence. Some parts of the UI are safety-
critical, e.g., to prevent unintended activation / deactivation or driver monitoring.

• The UI System provides commands such as activation / deactivation requests, accelerati-
on, steering and brake requests, destination input, or pull-over request (UserInput).

• The UI System receives requests and status information such as take-over request, or envi-
ronment model for the Heads-Up Display (HUD) and presents those to the user (UserInfor-
mation).

• The UI System also provides diagnostic information to the Diagnostics System (Diagno-
sticsData).

1.2.5 DIAGNOSTICS SYSTEM
The Diagnostics System collects status information from all systems in the vehicle and may also 
contain data recording functionality (logging and/or black box). In contrast to traditional auto-
motive diagnostics, the Diagnostics System we refer to here is focused on the AD operation and 
should be seen as an abstraction of existing and required (new) features. At least part of this 
system needs to be onboard the vehicle.

• The Diagnostics System provides status information such as detected malfunctions in other 
systems (SystemStatus).

• The Diagnostics System receives status information from all other systems (DiagnosticsData).

⁵ “Sufficient” covers multiple aspects, which go beyond the scope of the “Safety & Architecture” Working Group. Among these are that the sensor set 
needs to have a sufficient coverage area (detection range) for the intended functionality, needs to be able to detect all relevant objects (e.g., via 
employing different sensor types), and needs to be robust to faulty sensors (e.g., via redundancy).
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1.3 SYSTEM REQUIREMENTS

While Section 1.1 describes the functionality offered by the AD Intelligence from a user perspective, 
we define assumed high-level requirements regarding the services offered by the system from a 
technical perspective in this section.

S1: AD INTELLIGENCE OUTPUT TIMELINESS

S2: AD INTELLIGENCE OUTPUT AVAILABILITY

S3: AD INTELLIGENCE OUTPUT CORRECTNESS

S4: AD INTELLIGENCE OUTPUT CONSISTENCY

ID Statement Notes

S4

The AD Intelligence shall enable the 
Actuator System (receivers) to ensure 
the consistency of executed actuator 
setpoints.

This applies to consistency between the 
setpoints executed by redundant receivers 
/ actuators, even for the case where multi-
ple communication channels are used, 
possibly connecting to multiple receivers. 

ID Statement Notes

S3

The AD Intelligence shall not provide 
erroneous outputs to the Actuator Sys-
tem (receivers), implying that appropri-
ate error detection, error handling or 
fault-masking should be introduced to 
reduce the likelihood of propagating 
failures (stemming from errors within 
the AD Intelligence).

Allowing an erroneous output to reach 
the actuators would lead to potential 
harm to the passengers or other traffic 
participants, e.g., due to a collision.

ID Statement Notes

S1
The AD Intelligence shall provide out-
puts to the Actuator System (receivers) 
in a timely manner.

„Timely manner“ is here used to refer to 
fast enough (for the dynamics at hand) 
and predictably (e.g., with sufficiently 
low jitter, and in every cycle)

ID Statement Notes

S2

The AD Intelligence shall provide out-
puts to the Actuator System (receivers) 
in a fail-operational way to each recei-
ver.

„In a fail-operational way“ means that the 
AD Intelligence continues to perform its 
nominal function or a degraded function 
in the presence of any one single fault. 
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S5: PERCEPTION MALFUNCTION DETECTION

S6: AD INTELLIGENCE DIAGNOSTICS

1.4 ABSTRACTION LEVEL

The discussion of system architecture can occur on several abstraction levels, which may be 
suited better or worse to the consideration of certain issues. In the following, we outline the 
levels relevant to the Safety & Architecture Working Group.

On a high abstraction level, we talk about “conceptual architectures”. Here, the system is 
composed of a small set of well-encapsulated subsystems that fail independently (so-called 
“Fault Containment Units” or FCUs). Each subsystem can comprise parts of a processing chan-
nel or even an entire processing channel (sensors to actuators). A point of particular interest on 
this abstraction level is how to achieve and manage sufficiently independent redundancy wi-
thin the system. 

On a low abstraction level, we talk about HW and SW architectures. Here, the system is com-
posed of a potentially large set of HW and SW components, which may be highly particular to 
the specific implementation and system vendor.

The Safety & Architecture Working Group focuses on the discussion of conceptual architectures 
for two main reasons:

• Conceptual architectures are sufficiently non-trivial, i.e., a reference solution and industry-
wide cooperation can provide benefits to system owners. Identifying the underlying prin-
ciples for achieving high integrity and high availability and combining them in a transpa-
rent way leads to a better understanding.

• Conceptual architectures are sufficiently generic, i.e., a reference solution can be appli-
cable to most system owners. Taking vendor-specific constraints, e.g., commercial consi-
derations or integration with legacy systems, into account is shifted to the specific HW and 
SW implementation.

Specific HW or SW architectures are not considered. Not only would implementation-specific 
considerations constrain applicability and distract from the underlying principles of the con-

ID Statement Notes

S6 The AD Intelligence shall report its sta-
tus to the Diagnostics System. 

This is not expected to be a differentiating 
factor between different conceptual archi-
tecture candidates. 

ID Statement Notes

S5

The AD Intelligence shall implement 
strategies to detect and react to per-
ception malfunctions and performance 
limitations due to environmental condi-
tions or other causes related to the Sen-
sor System.

This is not expected to be a differentiating 
factor between different conceptual archi-
tecture candidates. Perception (and also 
localization, prediction, and ODD detecti-
on) is outside the scope of this study, but 
nevertheless considered at the functional 
level in section 2.8 
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ceptual system architectures, but they are also likely to quickly become obsolete. However, we 
will identify considerations that apply when mapping a conceptual architecture to HW and SW 
in order to ensure the desired system properties.

1.5 GENERAL CONSTRAINTS AND DESIGN PRINCIPLES

When coming up with conceptual system architectures intended to satisfy the system require-
ments in section 1.3, several aspects should be considered: 

• There are certain basic technological limitations which constrain how very high reliability 
systems can be designed, built using realistic HW and SW components, and tested. Such 
general constraints are summarized in section 1.5.1. 

• In addition, there is a set of empirical best practices that should be respected in a sound 
conceptual system architecture. Such design principles are summarized in section 1.5.2.

1.5.1 GENERAL CONSTRAINTS

G1: DESIGN FAULTS IN LARGE AND COMPLEX MONOLITHIC SYSTEMS

Rationale

• A SW system with more than ~10k lines of code will statistically contain at least one SW fault 
despite adequate testing [10] [11]. This does not mean that a SW system with fewer lines of 
code will necessarily be free from faults with adequate testing (e.g., control flows can still 
be complex). Heisenbug type faults [12] [13], which may appear to “alter” its behavior when 
attempting to investigate or reproduce it, can prove particularly hard to detect and elimi-
nate. A typical example of a Heisenbug fault is a race condition in concurrent software.

• The ADI can be assumed to contain several subsystems that each contain more than a 
million lines of source code.

G2: SINGLE-EVENT UPSETS IN NON-REDUNDANT HW

Rationale

• SEUs are caused by ionizing particles, e.g., cosmic radiation, which affects electronic de-
vices such as processors or memory. The impact of this depends on the executed SW, but 
in the worst case, e.g., for brittle neural networks, even a single bitflip can lead to 
misclassification [14].

ID Statement Notes

G1
We assume that it is impossible to find 
all design faults in a large and complex 
monolithic SW system. 

Including sample omissions and biases in 
machine learning training. 

ID Statement Notes

G2
We assume that it is impossible to miti-
gate single-event upsets (SEUs) in non-
redundant HW.

While the architectural evaluation in this 
report will not go to a detailed hardware 
level, the implication is that errors due to 
SEUs must be considered in the system-le-
vel architecture design.
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G3: TESTING AND SIMULATION OF VERY HIGH SAFETY-RELATED AVAILABILITY OF LARGE 
MONOLITHIC SYSTEM

Rationale

• Depending on the testing assumptions, it would take hundreds of millions to hundreds of 
billions of miles driven to demonstrate the reliability of autonomous vehicles [15] [16]. Addi-
tional methods like simulations can only alleviate this to some extent.

G4: SPECIFICATION OF CRITICAL SCENARIOS

Rationale

• The challenge relates to the „open“ environments of many ODDs and moreover to the fact 
that traffic behavior will change as AVs are introduced [17].

• The field of automated driving is relatively new compared to the aerospace industry. Even 
in the comparably “simple” environment of the sky, it took several decades of collecting 
and studying rare and exceptional situations to establish similarly high dependability.

• Examples for such edge cases are rare traffic participants (costumed pedestrian, vehicle 
with odd shape, vehicle with sky blue paint or mirror finish, etc.), rare events (complex 
traffic accident, confusing lost load on road, etc.), or rare environmental conditions (moon 
in ash cloud, etc.).

G5: FREQUENT SWITCHING

Rationale

• Under certain conditions, switching back and forth between the trajectories / sets of set-
points of two subsystems may lead to unsafe behavior, e.g., when "mixing" evasive action 
to the left and the right and thus never moving far from the center.

ID Statement Notes

G3

We assume that it is impossible to esta-
blish the very high safety-related 
availability of a large monolithic sys-
tem by testing and simulation alone. 

The order of magnitude considered here is 
similar to the rate of random HW faults for 
ASIL D.

ID Statement Notes

G4

We assume that it is impossible to preci-
sely specify all critical scenarios that 
can be encountered within the ODD 
specified for automated driving.

The corresponding risks can be reduced 
by guidance from relevant standards such 
as SOTIF and UL4600, including through 
ODD and field monitoring.

ID Statement Notes

G5

We assume that it is unsafe to frequent-
ly switch back and forth between the 
trajectories generated by different sub-
systems.

It is known from basic control theory that 
„bumpless transfer“ requires some form of 
interaction between controllers involved in 
switching. Trajectories generated by diffe-
rent subsystems might not implement the 
same driving strategies, e.g., with respect 
to passing obstacles vs. braking.
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G6: CHECKS TO DETERMINE PLAUSIBILITY OF ANOTHER SUBSYSTEM

Rationale

• There are many ways of designing safety mechanisms that cover the essential safety goals 
of the AD Intelligence. Instead of the trajectory, checking may also apply at the level of a 
set of setpoints for the Actuator System.

▪ Proposed trajectories can be checked against another environment model (than the 
one that was used to generate it), i.e., whether certain safety goals are violated.

▪ Proposed sets of setpoints can be checked against another environment model and 
against the corresponding proposed trajectory, i.e., whether the two are consistent.

▪ A runtime environment model can be checked for violations of assumptions or of the ODD.

G7: RATE OF SAFETY INCIDENTS

Rationale

• While the failure rate targets in ISO 26262 only apply to random HW faults, the dependa-
bility goals for the AD Intelligence apply jointly to hazards arising from random and syste-
matic HW faults, systematic SW faults, and insufficient specifications or performance limi-
tations (SOTIF).

G8: IMPACT OF SYSTEM FAILURE

ID Statement Notes

G7

We assume that the target rate of ha-
zardous behavior for the AD Intelli-
gence functionality covers random 
faults, systematic faults, and functional 
insufficiencies.

This assumption is included to be able to 
reason about architectural candidates, re-
flecting a failure rate that does not take 
into account the causes of malfunctions. 

ID Statement Notes

G6

We assume that it is possible to develop 
a subsystem which can assess the plau-
sibility of the proposed trajectory pro-
duced by another subsystem based on 
the former’s internal environment mo-
del.

No subsystem will have access to ground 
truth but is in principle able to assess the 
perceived correctness of the trajectory 
provided by another system. Comment: 
Special focus must be put on eliminating 
dependent failures.
With perceived correctness of the trajecto-
ry, we refer to satisfying certain safety re-
quirements (trajectory verification).

ID Statement Notes

G8

We conservatively assume that all failu-
res lead to hazardous behavior of the 
AD Intelligence, leading to accidents in 
the worst case. 

This is a pessimistic assumption, but con-
servativeness was deliberately chosen to 
be on the safe side. While some failures, 
e.g., a collision trajectory, will be highly 
hazardous, other errors may not impact 
risk to a large extent (e.g., a slightly alte-
red trajectory).
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Rationale

• This applies only to situations where the AD Intelligence as a whole fails. The failure of sin-
gle subsystems can be compensated for by the conceptual architecture.

• While active, the AD Intelligence replaces the human driver. However, according to traffic 
statistics [15] [18], only a small fraction of reported accidents (human-driven cars) involves 
fatalities (0.1-0.2%) or severe injuries. In addition, a significant fraction of minor accidents 
is not even reported to authorities (25-60%) [15] [19]. Most wrong decisions made by hu-
man drivers thus do not have severe consequences. We cannot make the outright assump-
tion that the severity distribution in accidents caused by human drivers is in any way simi-
lar to those caused by an AD Intelligence; however, it is clear that not all failures of the AD 
intelligence will lead to fatal accidents.

• The assumption is related (complementary) to the “improvement factor” demanded of an 
AD Intelligence over the average human driver.

G9: HW FAULT CHARACTERISTICS

Rationale

• This explicitly excludes the consideration of early failures or wear-out / aging effects ("ba-
thtub" curve).

G10: INTERFERENCE FROM OTHER SYSTEMS

Rationale

• Inputs from other safety-related systems, e.g., Automated Emergency Braking (AEB) or si-
milar, can be overridden on the Actuator System side while the AD Intelligence is in opera-
tion.

ID Statement Notes

G9

For FIT rate calculations, we assume 
that HW failure rates are constant over 
time (i.e., not a function of time), and 
that there are no dependent failures 
(i.e., that no cross-correlations bet-
ween different subsystems exist).

HW FIT rate calculations focus on random 
HW faults only. Systematic HW faults have 
to be considered in a different context.

ID Statement Notes

G10
We assume that other safety-related 
systems do not interfere negatively with 
the AD Intelligence. 

Alternatively phrased, we assume an ar-
chitecture which coordinates the safety-
related behavior of the vehicle.
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1.5.2 DESIGN PRINCIPLES

D1: FAULT CONTAINMENT UNITS

Rationale

• See G1: Design faults in large and complex monolithic systems, G2: Single-event upsets in 
non-redundant HW, and G3: Testing and simulation of very high safety-related availabili-
ty of large monolithic system.

• To reduce the complexity of a large system, one of the simplest and most robust techni-
ques is to allocate separable functions to subsystems that can be shown to be as indepen-
dent from each other as possible  [10]. Such subsystems should form FCUs, which can be 
validated separately.

D2: SIMPLE AND COMPLEX SUBSYSTEMS

Rationale

• See G1: Design faults in large and complex monolithic systems, G3: Testing and simulation 
of very high safety-related availability of large monolithic system, and G4: Specification of 
critical scenarios.

• Simple subsystems should be developed fully to ASIL D, be fully formally specified (to pre-
clude Byzantine faults⁶ during runtime), and contain a relatively small number of lines of 
code (i.e., thousands, not millions).

D3: DIVERSITY AND REDUNDANCY FOR COMPLEX SUBSYSTEMS

Rationale

ID Statement Notes

D1
The AD Intelligence shall consist of a set 
of independent subsystems that each 
form a Fault Containment Unit (FCU).

Special emphasis needs to be placed on 
avoiding dependent failures. The appro-
priate strategies for achieving this depend 
on the complexity of the subsystem and the 
consequences that dependent failures 
can cause. 

ID Statement Notes

D2

The conceptual architecture of the AD 
Intelligence shall distinguish between 
simple subsystems (fully verifiable – pre-
ferably with formal techniques – and 
deterministic, e.g., due to being formal-
ly specified, having few lines of code, 
and avoiding algorithmic complexity) 
and complex subsystems.

ID Statement Notes

D3 The complex subsystems of the AD Intel-
ligence shall be diverse in design.

Groups of redundant subsystems may have 
similar or identical purposes; in which case 
they should have different designs.

⁶ See https://en.wikipedia.org/wiki/Byzantine_fault.
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• See G1: Design faults in large and complex monolithic systems, G3: Testing and simulation 
of very high safety-related availability of large monolithic system, G4: Specification of criti-
cal scenarios, D1: Fault Containment Units, and D2: Simple and complex subsystems.

• Complex subsystems must be assumed to exhibit Byzantine faults, i.e., inconsistent or arbi-
trary behavior when faulty. Due to their size and complexity, design faults and HW failures 
become inevitable and must be addressed by employing redundancy and design diversity.

D4: PROVABLE CORRECTNESS FOR SIMPLE SUBSYSTEMS

Rationale

• See G1: Design faults in large and complex monolithic systems, D1: Fault Containment 
Units, D2: Simple and complex subsystems.

• It is difficult to achieve replica determinism, i.e., identical behavior from two instances of 
the same implementation, for complex subsystems. However, this can be achievable for 
relatively simple decision logic, using simple, fully verifiable SW running on fault-tolerant 
HW.

D5: AVOIDANCE OF EMERGENT BEHAVIOR

Rationale

• See G3: Testing and simulation of very high safety-related availability of large monolithic 
system and G4: Specification of critical scenarios.

• As establishing the very high dependability of a monolithic system is not feasible, it is ne-
cessary to provide evidence of each constituent subsystem’s dependability separately. 
Such an effort is vastly facilitated if these subsystems are coherent and avoid emergent 
behavior when interacting with other subsystems.

D6: TRANSIENT AND PERMANENT FAULTS

Rationale

ID Statement Notes

D5
The conceptual architecture shall mini-
mize interactions among the different 
subsystems.

ID Statement Notes

D4

The simple subsystems of the AD Intelli-
gence shall be sufficiently simple such 
that they are fully verifiable (formally 
specified, few lines of code).

It is assumed that the simple subsystems 
will be concerned with arbitration invol-
ving logic.

ID Statement Notes

D6

If the AD Intelligence detects a large 
number of transient faults within one of 
its subsystems, it shall consider this a 
permanent fault in this subsystem.
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• See G6: Checks to determine plausibility of another subsystem.

• When transient faults occur too often, it is reasonable to consider this a permanent fault 
and to react appropriately (e.g., request driver to take over and/or execute an MRM).

D7: MITIGATION OF COMMON-CAUSE HAZARDS

Rationale

• The various hazards that can lead to ADS losses are a function of the ODD and use case. 
Functional insufficiency is a major (if not majority) contributor to hazardous ADS behavior 
[22]. There is an opportunity to address them at the design level too, not just within V&V ef-
forts. 

• Each channel of the architecture pattern can be characterized by capabilities. As introdu-
ced in the SaFAD whitepaper [4], these capabilities can be understood as being the fun-
damental set of system properties that are responsible for safety (nominal/degraded func-
tionality – implemented via elements). The channel’s functional complexity is indicated by 
the depth of the slice, and the operational domain coverage (i.e., ODD, Operational Do-
main, or Target Operational Domain) is indicated by its area. 

• Output insufficiency is a lack of the capability that is intended to be provided; shared out-
put insufficiency between channels allows triggering conditions to manifest as losses and 
are analogous to the (un-)known unsafe area in SOTIF [22]. Likewise, shared errors bet-
ween channels allow fault root causes to manifest as losses. 

▪ Therefore, the conceptual design goal of minimizing the shared lack of capability 
across channels can be formulated. The conceptual dimensioning and positioning of 
errors and output insufficiency across channels must be well understood for 
mitigation efforts (such as diverse, heterogeneous implementations) to offer 
complementary capability. 

▪ As indicated by the model, it cannot be assumed that efforts to achieve diversity with 
respect to fault tolerance will also satisfy the diversity required to mitigate functional 
insufficiency. There must be an awareness that fault-tolerant implementations alone 
do not exclude the possibility of functional insufficiencies leading to losses. 

ID Statement Notes

D7

The conceptual architecture shall mini-
mize the possible propagation paths of 
hazards by mitigating against com-
mon-cause faults and functional insuf-
ficiency across the design pattern [20] 
[21].

Adaptation of the Swiss-cheese model in 
Figure 6 and Figure 7 is proposed to guide 
awareness regarding propagation of ha-
zards through system channels. It further-
more supports the abstract design goal 
formulation of minimizing overlap of the 
holes. An example is provided in Appendix 
C: Sample analysis points regarding diffe-
rent conceptual architecture patterns.
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Figure 6: Conceptual architecture-level hazard propagation, as expressed via an adaptation of the Swiss-cheese model

Figure 7: Bird's-eye view - Reduction of hole overlaps (errors, output insufficiency) as a design goal for channel design
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2 ARCHITECTURE 
EVALUATION CRITERIA
2.1 ARCHITECTURAL DECISIONS AND PROCESSES

The term “architecture” can cover both commercial aspects, e.g., as business architectures, 
and technical aspects. In the latter, it can cover different abstraction levels, e.g., functional 
architectures, conceptual architectures, logical architectures, down to very specific physical 
HW and SW architectures.

As stated in section 1.4, the focus of the Safety & Architecture Working Group lies on the concep-
tual abstraction level. To make sound architectural decisions here, we first need to define a set 
of evaluation criteria suitable for this abstraction level. These should not exist in isolation, i.e., 
they should relate to relevant decisions the target reader of this document needs to make. To 
ensure this relevance, we first outline a persona for the assumed reader, i.e., someone respon-
sible for making architectural decisions as part of a systems design process.

2.1.1 SYSTEM OWNER PERSONA
It lies within the responsibility of “system owners” (often system architects), whom we consider 
the intended readers of this document, to ensure a consistent systems design across all abstrac-
tion levels (recall Figure 2). In the following, we outline the system owner persona.

The system owner can work for an OEM, a mobility company, or for a system supplier:

• Large and/or technologically leading OEMs may try to bring most of the architectural de-
sign in-house. In this case, the system owner needs to make all architectural decisions, 
perform mapping between abstraction levels, and ensure consistency. 

• Small and/or technologically following OEMs, as well as mobility companies, may try to 
buy off-the-shelf system solutions. In this case, many architectural decisions are made by 
the system supplier, but the system owner still needs to understand the different architec-
ture perspectives to pick a suitable system solution.

• System suppliers are often focused on providing off-the-shelf HW platforms but may also 
extend to SW platforms and application SW solutions. In this case, the system owner may 
need to demonstrate to prospective customers that the offered solutions can be combined 
into a suitable AD system.

1.1.2 ARCHITECTURE DESIGN PROCESS AND DECISIONS
Textbook systems design should start at the top-most, user-focused level and then – step by step 
– become more and more detailed and specific as the design is refined. This may involve some 
of the following steps (see also Figure 8):

• High-level users and use cases are defined.

• Use cases are broken down into high-level system requirements.

• The system requirements are used to develop the high-level systems design.

• The systems design is used to derive more detailed application SW requirements.

• The application SW requirements are used to develop the application SW design.

• The application SW design is used to derive requirements for the SW platform and HW platform.
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• The platform requirements are used to develop the SW and HW platform designs.

In practice, the architecture design process is often not top-down. Several factors can contribu-
te to this:

• An incomplete understanding of the problem space or insufficient domain knowledge 
may necessitate building a prototype before writing requirements.

• Emergent properties in the environment (e.g., the environment changing when exposed to 
the system) can also only be understood once a prototype is in the field.

• External constraints and commercial considerations (e.g., the much longer lead times and 
in HW development) can also shape the design before requirements are even known. In 
addition, legacy constraints may also come into play.

Working bottom-up can lead to situations where the design of the HW platform constrains the 
design of the application SW and ultimately also the conceptual architecture.

The system owner must make architectural decisions at each of the steps described above:

• What is a suitable conceptual architecture for the particular use cases?

• What is a suitable SW architecture for the particular use cases? Does it match the concep-
tual architecture? Is it commercially viable?

• What is a suitable HW architecture for the SW stack? Does it match the conceptual archi-
tecture? Is it commercially viable?

• Which of the available system solution offerings is suitable for the particular use cases?

Figure 8: Idealized mapping process between different architectural abstraction levels.

Conceptual arch.

HW arch. SW arch.

Mapping 
conciderations
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2.2 GENERAL REQUIREMENTS

There are many properties that a well-designed AD Intelligence needs to have. Only some of 
these are suitable for differentiating different architectures on the conceptual level. Many of the 
attributes applicable at the physical level can be assumed to be present as long as the map-
ping of conceptual architecture elements to HW and SW components is done properly, and 
automotive development processes are followed.

For completeness, we list some of these properties in the following.

2.2.1 AUTOMOTIVE QUALITY
All components used in the AD Intelligence need to satisfy the usual automotive quality stan-
dards such as AEC-Q100 to ensure suitability for automotive use cases. This can involve robust-
ness to shocks, high and low temperatures, etc.

2.2.2 ADHERENCE TO STANDARDS
There are several industry standards that need to be followed in the development and producti-
on of the AD Intelligence. The ones that immediately come to mind are ISO 26262 (Functional 
Safety) [2], ISO 21448 (Safety of the Intended Functionality) [3], ISO 21434 (Cybersecurity) [6], UL 
4600 (Safety Case Assessment) [23], and SAE J3018 (Safety of On-Road Testing) [24].

2.2.3 FIELD MONITORING AND UPDATE PROCESS
Even with the most rigorous safety development process, a sufficiently complex system will al-
most inevitably have flaws that were underestimated or unforeseen. Therefore, it is necessary 
to continuously monitor vehicles in the field and analyze the collected data, e.g., to establish 
that assumptions made in the safety analysis continue to hold true over the lifetime of the vehic-
le. Flaws can be addressed by providing timely updates to minimize exposure to both safety 
and security vulnerabilities.

2.2.4 COMFORT AND FUNCTIONALITY
Ultimately, the AD feature needs to provide benefits to the end user. This implies that the AD 
function controls the vehicle in a manner that is both comfortable (e.g., low acceleration and 
low jerk) and beneficial to the passengers (e.g., a useful speed limit).

2.2.5 MODULARITY AND MAINTAINABILITY
Road vehicles often have an intended minimum economically viable lifetime of around 15 
years⁷. Over such an extended period, it is likely that several components, particularly complex 
ones such as high-performance electronics, will need to be maintained or replaced. As AD sys-
tems and their components are relatively expensive, it is advantageous to design them in a 
modular (and thus more easily maintainable) manner.

2.2.6 PHYSICAL IMPLEMENTATION
Some attributes are specific to the physical implementation of the AD Intelligence. In general, 
the Electronic Control Units (ECUs) involved in the AD functionality need to be sufficiently small 
to fit inside the constrained internal space of the vehicle. They also need to have sufficiently low 

⁷ Of course, many vehicles continue in service much longer.
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power consumption to not have a severe impact on the range of electric vehicles and/or cause 
issues with heat dissipation. Finally, the affordability of the system should also not be neglected.

2.2.7 SAFETY
The AD Intelligence must be developed to the highest applicable level as defined in ISO 26262 
(i.e., ASIL D) and ISO 21448 (see also sections 5.3.2 and 5.3.3, respectively)⁸. There are two 
elements of safety for a fail-operational/fail-degraded system: the availability of the system, 
which is the probability that the system keeps operating properly when a failure occurs⁹, and 
the safety of the available outputs itself, which avoids an unreasonable risk due to their execu-
tion (e.g., collisions).

ISO 26262 uses the FIT rate (Failures in Time, i.e., per billion hours of operation) as a metric to 
quantify the occurrence of random HW faults. Other relevant causes for safety incidents such 
as systematic HW faults, systematic SW faults (bugs), and functional insufficiencies (SOTIF), are 
mainly addressed by prescribing safety processes¹⁰.

To quantify the required level of safety of the system more comprehensively, we define the total 
rate of safety incidents (including all the underlying causes listed above) that can lead to un-
safe situations (see G7: Rate of safety incidents). This rate of safety incidents for the system can 
be calculated through a Failure Modes, Effects, and Diagnostics Analysis (FMEDA) and a Fault 
Tree Analysis (FTA). Based on the reference AD use case, we propose a tentative target for the 
rate of safety incidents of 10-100 per billion hours of operation (10-⁸ – 10-⁷ per hour). 

Different parties from industry and academia have discussed widely varying target rates [25] 
[26] [27]. These range from ~10-⁹ per hour (or even lower) up to ~10-⁷ per hour. These conside-
rations are often based on the average rate of traffic accidents (or fatalities) for a particular 
use case (total or just highway) and an improvement factor over the average human driver.

Such a derivation roughly proceeds as follows:

• The rate of reported traffic accidents (fatal and non-fatal) can be estimated from traffic 
statistics [18] [15] [28]. This varies to a degree between countries and by use case, depen-
ding on the typical speed, the traffic situation complexity, and what other traffic partici-
pants are involved. The rate of fatal accidents is in the range of 1.7 x 10-⁷ – 5 x 10-⁷ per 
hour¹¹.

• The rate of reported non-fatal accidents from the same statistics is typically 100x – 1000x 
higher, ranging from 7.1 x 10-⁵ to 2 x 10-⁴ per hour. However, it cannot necessarily be assu-
med that this ratio will be similar for AD. To demonstrate a positive risk balance, we should 
therefore aim to build an ADI that has fewer safety incidents than humans have fatal acci-
dents (see G8: Impact of system failure).

• The demanded improvement factor over the average human driver depends on public 
acceptance. Values here can range from as high as 1000x [25], which is used as a refe-
rence in aerospace, to as low as 4-5x [29], which people already find acceptable in sur-
veys. An intermediate value of 10x – 100x may be reasonable [26].

• We also need to neglect contributions from other causes that cannot be addressed by the 
ADI (see Figure 9). Only causes equivalent to the cognitive tasks otherwise performed by 
the driver can be considered for the target rate of safety incidents.

⁷ Of course, many vehicles continue in service much longer.
⁸ Through the use of ASIL decomposition, the ASIL for many subsystems and components can be lowered, e.g., to ASIL B(D). 
⁹ Loss of functionality, e.g., turning the system off in case of a malfunction, can lead to a hazard.
¹⁰ ISO 21448 specifies mandatory qualitative metrics for the residual risk. An example given for this is the maximum number of accidents per hour. 
¹¹ Some of these rates are given in incidents per kilometers driven. When necessary, we assume an average speed of 60 km/h for all driving and 110 
km/h for highway driving to convert.
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Our tentative target of 10-⁸ – 10-⁷ per hour for the rate of safety incidents is an improvement of 
~10x (1.7x - 50x) over the rate of fatal accidents and an improvement of ~1000x (710x -20000x) 
over the total rate of accidents.

Figure 9: Coarse overview of causes contributing to accidents.

2.3 AVAILABILITY

Because there is no human driver to take over control, the availability of the system, i.e., its 
readiness for correct service, also becomes crucial. We define three evaluation criteria related 
to the availability attribute.

2.3.1 AVAILABILITY OF THE SYSTEM
A suitable conceptual system architecture must take Safety-Related Availability (SaRA) into ac-
count. This means that it is designed in such a way that no single fault can lead to the failure 
(or unavailability) of the entire AD Intelligence. At least some degraded functionality needs to 
be available and dispatchable. Key questions related to this are:

• Does the conceptual system architecture maintain safety (integrity and availability) in the 
presence of any single fault or functional insufficiency¹²?

• Does the conceptual system architecture also cover all sufficiently probable dual- and 
multi-point faults (including common cause faults)?

If the conceptual system architecture scores badly on these questions, the system owner should 
consider it unsuited for AD use cases where unavailability of the system is inherently unsafe, 
which is most driving situations other than parking.

¹² The definition of single-point faults in ISO 26262 only covers HW faults, whereas we also consider SW faults and functional insufficiencies. 



40 www.the-autonomous.com

2.3.2 DIAGNOSTICS SCHEME
If the different subsystems have self- or cross-checking diagnostic capabilities, they can facili-
tate degradation schemes in the AD Intelligence (see section 2.3.3). This enables them to react 
dynamically to each other’s condition, e.g., by proactively switching to a more cautious course 
of action. Key questions related to this are:

• Are the different subsystems aware of each other’s condition?

• Can the different subsystems adapt based on each other’s condition?

If the conceptual system architecture scores badly on these questions, the system owner should 
consider the increased burden on the degradation scheme.

2.3.3 DEGRADATION SCHEME
While a failure of the AD Intelligence needs to be prevented at all costs (and thus be exceptio-
nally rare), failures of a single subsystem will be much more frequent. This can necessitate swit-
ching to a degraded mode, where the AD Intelligence executes an MRM [67]¹³. If this occurs too 
frequently or unnecessarily (e.g., due to a transient or recoverable fault), it can adversely affect 
both the user experience and public safety (e.g., due to blocked public roads). Key questions 
related to this are: 

• How noticeable is it to the end user when an error occurs in the system?

• Are different levels of degradation possible and how graceful are these?

• Is cold / warm / hot standby used (good for availability but bad for power consumption)?

If the conceptual system architecture scores badly on these questions, the system owner should 
consider the increased burden on the integrity of the implemented function, as no additional 
lines of defense may exist.

There may be additional practical criteria such as minimizing risk redistribution onto vulnerable 
population segments, but such issues are beyond the scope of this report.

2.4 RELIABILITY

Whenever degradation is used in the system (see also section 2.3.3), the full, nominal functio-
nality is no longer available. This has a noticeable impact on the user experience. In particular, 
frequent transient faults and/or false positives should not lead to unnecessary degradation. 
Therefore, the reliability of the AD Intelligence, i.e., its continuity of correct service, is important. 
We define one evaluation criterion related to the reliability attribute.

2.4.1 AVAILABILITY OF THE NOMINAL FUNCTIONALITY
A suitable conceptual system architecture is based on concepts that prevent unnecessary de-
gradation, ensuring that the nominal functionality of the AD Intelligence is available as much 
as possible. This is also related to the redundancy management scheme, which is based on 
some kind of arbitration and ultimately decides the behavior of the system based on a limited 
set of inputs. Arbitration algorithms can be relatively simple, e.g., a simple silencing function in 
Doer/Checker, or rather complex, e.g., inexact voting algorithms. Complex arbitration algo-
rithms may be difficult to implement in a robust way, potentially outweighing benefits from 

¹³ Degradation schemes can have several levels, which are progressively less safe and desirable. Schemes have been proposed to quantify such 
cascades and the respective acceptable probabilities of each level [67].
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achieving a simpler conceptual architecture (see also sections 2.3.1, 2.3.3, 2.5.1, and 2.7.1). Key 
questions related to this are:

• Is the system prone to false positives that make the nominal functionality unavailable?

• Is the system sufficiently reliable to avoid creating nuisances like blocking public roads?

• Do the arbitration algorithms require complex and abstract decisions?

• Can these decisions be converted to pseudo-code and broken down into manageable lo-
gical statements?

If the conceptual system architecture scores badly on these questions, the system owner should 
consider the need for a redesign of the system or alternatively the increased burden on the 
quality of the primary functionality. This may require significantly higher testing efforts.

2.5 CYBERSECURITY

While the focus of the Safety & Architecture Working Group is on safety and we consider a de-
tailed cybersecurity analysis outside our scope, some aspects of conceptual system architectu-
res have an indirect impact on security considerations. We define two evaluation criteria rela-
ted to the cybersecurity attribute.

2.5.1 INTERACTIONS BETWEEN SUBSYSTEMS
A suitable conceptual system architecture consists of several well-encapsulated subsystems that 
ensure that faults arising within them do not propagate to the rest of the system, i.e., Fault Con-
tainment Units (FCUs). Similar considerations apply from a security perspective, i.e., where few 
and well-defined interfaces between subsystems are beneficial. Key questions related to this are:

• How many communication interfaces are there between the different subsystems?

• How frequent and extensive (bandwidth) are these interactions?

• Are well-defined and restricted interfaces used?

If the conceptual system architecture scores badly on these questions, the system owner should 
consider that the security concept must more extensively consider the case where multiple sub-
systems are compromised simultaneously via propagation.

2.5.2 INTERACTIONS WITH EXTERNAL SYSTEMS
It is generally assumed that the AD Intelligence will need to interact with external systems, e.g., 
for map and traffic data, V2X, or to receive updates. Reducing the number of subsystems that are 
involved in this can help reduce the attack surface of the system. Key questions related to this are:

• Which subsystems need to communicate with the outside world?

• How often and for what purposes (HD maps, updates, etc.) is this communication neces-
sary¹⁴?

• Which subsystems require updates and how often? Do they use the same update mechanisms?

If the conceptual system architecture scores badly on these questions, the system owner should 
consider that the security concept must more extensively consider the case where multiple sub-
systems are compromised simultaneously.

¹⁴ This may depend on the use case and ODD, and may also change over time.
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2.6 SCALABILITY

From the perspective of the system owner, a particular implementation of the AD Intelligence 
is not developed in isolation.

• Carrying over already developed systems (or components thereof) can provide huge sa-
vings in money and time.

• In addition, most OEMs aim to address different market segments and are therefore inte-
rested in multiple (and hopefully scalable) offering levels. These can range from legally 
required NCAP functionality to premium AD or even driverless functions (e.g., MaaS / ro-
botaxis).

We consider both of these as parts of a scalability attribute, for which we define two evaluation 
criteria.

2.6.1 SCALABILITY TOWARDS HIGHER AVAILABILITY
AD features classified as SAE Level 4 and above, which are the scope of the Safety & Architec-
ture Working Group, can vary widely, implying vastly different availability goals. For a Highway 
Pilot feature, remaining available for tens of seconds and coming to a controlled stop is consi-
dered sufficient. However, a fully driverless vehicle may require some limp-home functionality, 
i.e., continuing driving for dozens of minutes up to hours. In the ideal case, the conceptual sys-
tem architecture can be scaled depending on the availability (or integrity) levels required by a 
particular use case. Key questions related to this are:

• Does the architecture support higher availability goals than what is necessary for the refe-
rence AD use case, e.g., for driverless use cases?

• Which subsystems would be added to achieve this?

If the conceptual system architecture scores badly on these questions, the system owner should 
consider that it may be difficult to re-use it for more elaborate AD use cases at a later point in 
time. It may then be necessary to switch to a different conceptual system architecture. 

2.6.2 SCALABILITY TOWARDS DIFFERENT OFFERING LEVELS
If multiple price segments or offering levels have to be addressed, it is highly advantageous 
from a cost perspective to develop all such systems jointly. Higher offering levels (offering AD 
features) can then be developed as extensions of lower ones (e.g., ADAS features) or vice ver-
sa. Such systems may even be similar from a functionality perspective (e.g., both performing 
highway driving with lane changes at up to 130 km/h) and only differ from an integrity and 
availability perspective (e.g., requiring supervision from an attentive driver or not). Key questi-
ons related to this are:

• Does the architecture support reusing ADAS (with minor modifications) as a subsystem 
(role and provided functionality)?

• Which subsystems are specific to SAE L3/L4 use cases?

If the conceptual system architecture scores badly on these questions, the system owner should 
consider that this may entail higher development costs.
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2.7 SIMPLICITY

While we do not consider physical implementation options as part of the Safety & Architecture 
Working Group, some aspects of conceptual system architectures have a pronounced – though 
indirect – impact on this. Complex architectures with tightly coupled subsystems are generally 
harder to implement, validate, and verify. Ideally, architectures should be sufficiently simple such 
that they can be easily understood, and their subsystems can be developed and validated inde-
pendently of each other. The latter is particularly important as testing a black box system to the 
required failure rates for AD is nigh impossible (see also G1: Design faults in large and complex 
monolithic systems). We define three evaluation criteria related to the simplicity attribute.

2.7.1 NUMBER, COMPLEXITY, AND PERFORMANCE OF SUBSYSTEMS
As stated before, suitable conceptual system architectures should consist of loosely coupled, 
cohesive subsystems (see section 2.5.1). As long as the number of subsystems and interactions 
is relatively low (e.g., manageable with current methodologies), emergent behavior can be 
more easily prevented. The development and HW costs of each subsystem depend more stron-
gly on its internal complexity and performance requirements. This can range from essentially a 
smart switch with minimal logic to high-performance, AI-based subsystems for perception and 
planning. Key questions related to this are:

• How many subsystems exist in the system (also implying development and HW costs)?

• How complex are these subsystems (e.g., involving ML/AI-based approaches or algorithms 
that are hard to implement or calibrate properly, also implying SW implementation cost)?

• What are the performance requirements of these subsystems (also implying power con-
sumption and HW cost)?

If the conceptual system architecture scores badly on these questions, the system owner should 
be aware that the cost to implement and manufacture a corresponding physical architecture 
is likely to be higher.

2.7.2 REQUIRED DIVERSITY
Ensuring that multiple subsystems do not fail simultaneously due to systematic faults and/or 
functional insufficiencies (see also G7: Rate of safety incidents) poses a pronounced new chal-
lenge in AD. On the level of a conceptual system architecture, this generally requires asking for 
some level of diversity between subsystems. Exploiting asymmetries, e.g., by making use of 
Doer/Checker approaches, can make it easier to ensure this. Key questions related to this are:

• Between which subsystems is diversity required (also implying increased development costs)?

• Are these complex and high-performance subsystems where not many different suppliers 
or approaches exist?

If the conceptual system architecture scores badly on these questions, the system owner should 
be aware of the additional cost and difficulty to implement provably diverse SW.
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2.7.3 COMPLEXITY OF VALIDATION
A well-known challenge in AD is how to demonstrate that the system is safe enough. To do this, 
testing is necessary – though not sufficient. The associated effort scales dramatically with the 
target failure rate of the system or subsystem. Key questions related to this are:

• Can subsystems be validated independently from each other?

• If so, does the required validation effort decrease significantly (e.g., 10-⁸ per hour / 100 mil-
lion hours for testing of the integrated system → 10-⁶ per hour / 1 million hours for each iso-
lated subsystem)?

• What is the complexity of ensuring the absence of correlated or common cause failures 
between subsystems?

If the conceptual system architecture scores badly on these questions, the system owner should 
be aware that testing will pose a significant challenge.

2.8 SAFETY OF THE INTENDED FUNCTIONALITY (SOTIF)

To ensure an acceptable level of dependability for AD/ADAS systems, the analysis of SOTIF 
aspects must be included in architectural design decisions from the beginning. Although the 
impact of SOTIF on the conceptual architecture of ADs has not been sufficiently examined, we 
propose some ideas that could help to determine whether particular architectures have the 
potential to better support SOTIF. 

We focus on the idea that each channel must be designed to ensure a safe vehicle behavior in 
all the expected operational conditions depending on its functional responsibility (e.g., nomi-
nal, or fallback capabilities). Then, the safe interaction between the different architectural ele-
ments shall be ensured for system safety. For this, dedicated components supporting SOTIF-re-
lated tasks are required. The analysis of the different modes of operation, ODD subsets and the 
intended functionality of the system may lead to the addition of sensors, components or additi-
onal channels to compensate for the functional insufficiencies. 

In general, modular architectures support SOTIF. This is evident for the challenges related to 
ODD and triggering conditions analysis, in combination with scenario-based validation. Ac-
ceptance criteria for validation efforts could also be defined per channel or in a more granular 
manner. Additionally, SOTIF issues are expected to require regular software updates (e.g., new 
traffic signs, extensions of the environmental model, safety case changes), which is facilitated 
by modular approaches.

2.8.1 SUPPORT TO ACCOMMODATE FUNCTIONAL INSUFFICIENCIES

• Does the architectural design sufficiently address the corresponding ODD and the vehic-
le's driving policy (e.g., OEDR, DDT, maneuvers, traffic rules)?

• Is the diversity of the architectural design elements sufficient to cover all the potential trig-
gering conditions and output insufficiencies (e.g., the perception subsystem consists of di-
verse algorithms applying deep learning vs sensor fusion perception, avoidance of com-
mon cause false negatives when detecting/classifying objects)?

• To compensate for performance limitations of the environment perception sensors, the AD 
architectures include sets of diverse sensor modalities (e.g., vision, lidar, radar, localization).

• Does the architecture facilitate the validation of scenarios (i.e., scenario-based verificati-
on and validation from the perspective of SOTIF)?
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If the conceptual system architecture scores badly on these questions, the system owner should 
be aware that the efforts to implement functional modifications addressing SOTIF-related risks 
is likely to be higher.

2.8.2 SUPPORT TO MANAGE OPERATIONAL CONDITIONS

• Does the architecture include components to monitor adequately the ODD in different 
operational conditions?

• Does the architecture ensure safe usage of the driving function in all operational conditi-
ons (e.g., control takeover, activation/deactivation, degraded mode, emergency mode)?

• Does the architecture support the monitoring and handling of potential misuses (i.e., abili-
ty to prevent or detect and mitigate reasonably foreseeable misuses)?

• Does the architecture support the data collection and monitoring of safety performance 
indicators during field operation (e.g., to improve the set of known scenarios, data possib-
ly collected in real-time)?

If the conceptual system architecture scores badly on these questions, the system owner should 
be aware that mitigating risks associated with potential functional insufficiencies and/or trig-
gering conditions, including those that are to be uncovered during operation, will likely be dif-
ficult to achieve. This can lead to the fact that a restriction of the intended functionality must be 
taken into consideration more than originally planned.

2.9 TABLE OF EVALUATION CRITERIA

Figure 10 illustrates the structure of the evaluation criteria. Each attribute is split into several 
evaluation criteria, which in turn have several associated key questions used during the evalu-
ation. The full set of evaluation criteria is listed in Table 2, along with related system require-
ments (compare section 1.3), general constraints (compare section 1.5.1), and design principles 
(compare section 1.5.2).

Figure 10: Structure of relevant attributes, evaluation criteria, and key questions.
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TABLE 2: SUMMARY OF THE EVALUATION CRITERIA.

Attribute Evaluation 
criterion Example observations Related

Availability

Availability of 
the system

• There are no obvious single-
point faults in the architec-
ture.

• The architecture can deal 
with some multi-point faults.

S1: AD Intelligence output time-
liness
S2: AD Intelligence output 
availability
S3: AD Intelligence output cor-
rectness
S4: AD Intelligence output con-
sistency
G1: Design faults in large and 
complex monolithic systems
G2: Single-event upsets in non-
redundant HW
G3: Testing and simulation of 
very high safety-related availa-
bility of large monolithic system
G4: Specification of critical sce-
narios 
D1: Fault Containment Units
D3: Diversity and redundancy 
for complex subsystems
D7: Mitigation of common-cau-
se hazards

Diagnostics 
scheme

• Subsystems are aware of 
other subsystems’ status and 
can adapt their behavior 
accordingly.

S6: AD Intelligence diagnostics

Degradation 
scheme

• The architecture has a defi-
ned degradation scheme.

• The failure of a single sub-
system does not immediately 
lead to an emergency reacti-
on (e.g., MRM).

S2: AD Intelligence output 
availability
D6: Transient and permanent 
faults
D7: Mitigation of common-cau-
se hazards

Reliability
Availability of 
the nominal 
functionality

• Frequently occurring transient 
faults do not lead to an emer-
gency reaction (e.g., MRM).

• The arbitration decisions can 
be broken down into 
manageable logical state-
ments.

G5: Frequent switching

D6: Transient and permanent 
faults

D7: Mitigation of common-cau-
se hazards

Cybersecurity

Interactions 
between 
subsystems

• Subsystems only interact via 
well-defined interfaces.

D1: Fault Containment Units
D5: Avoidance of emergent be-
havior

Interactions 
with external 
systems

• Few subsystems need to 
communicate with external 
systems.

• Few subsystems require fre-
quent (e.g., OTA) updates.

• Some subsystems can make 
use of a different, slower up-
date mechanism (e.g., in 
workshop).
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Attribute Evaluation 
criterion Example observations Related

Scalability

Scalability to-
wards higher 
availability

• The architecture can be extended 
by adding more subsystems to 
achieve higher availability or inte-
grity.

Scalability 
towards 
different 
offering levels

• Some of the subsystems are very 
similar to SAE L2 ADAS systems in 
functionality and could be carried 
over with minor modifications.

Simplicity

Number, 
complexity, 
and perfor-
mance of 
subsystems

• The number of subsystems is small.

• The number of complex subsys-
tems is small.

• The number of subsystems with 
high computational performance 
requirements is small.

D1: Fault Containment 
Units
D2: Simple and complex 
subsystems
D5: Avoidance of emer-
gent behavior
D7: Mitigation of com-
mon-cause hazards

Required 
diversity

• Diversity is required between few 
subsystems.

• Diverse subsystems perform 
complementary functions (e.g., 
Doer / Checker).

• Few complex subsystems require 
diversity.

S2: AD Intelligence output 
availability
S3: AD Intelligence output 
correctness
G6: Checks to determine 
plausibility of another 
subsystem
D3: Diversity and redun-
dancy for complex sub-
systems
D7: Mitigation of com-
mon-cause hazards

Complexity of 
validation

• The different subsystems are loo-
sely coupled and cohesive 
enough to be independently vali-
dated.

• The target failure rate of each 
subsystem requires a managea-
ble testing effort. 

G1: Design faults in large 
and complex monolithic 
systems
G3: Testing and simulati-
on of very high safety-re-
lated availability of large 
monolithic system
D4: Provable correctness 
for simple subsystems

Safety of the 
intended 
functionality

Support to 
accommoda-
te functional 
insufficiencies

• The diversity of the architectural 
design elements (e.g., indepen-
dent sensor sets) decreases the 
risk of unhandled output insuffi-
ciencies.

G1: Design faults in large 
and complex monolithic 
systems
G4: Specification of criti-
cal scenarios 
G7: Rate of safety incidents
G8: Impact of system failure
D3: Diversity and redun-
dancy for complex sub-
systems
D4: Provable correctness 
for simple subsystems
D7: Mitigation of com-
mon-cause hazards

Support to 
manage ope-
rational con-
ditions

• The separation into independent 
channels with specific capabili-
ties enables a high level of vehic-
le situational awareness.

S5: Perception malfuncti-
on detection
G4: Specification of criti-
cal scenarios 
D7: Mitigation of com-
mon-cause hazards
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3 CANDIDATE 
ARCHITECTURES
In this section, we collect and describe different proposed conceptual system architectures that 
we will evaluate in section 4. We first describe the process we used for collecting such candida-
te architectures based on publicly available sources and the experience of the Working Group 
members (see section 3.1). Then, we identify generic underlying principles that are shared bet-
ween multiple candidate architectures (see section 3.2). Finally, we describe the structure and 
behavior of each candidate architecture, where we cluster them into three major types:

1. MONOLITHIC ARCHITECTURES 
(see section 3.3) present the status quo for SAE L2 ADAS and serve 
as the baseline for the evaluation. 

2. SYMMETRIC ARCHITECTURES 
(see section 3.4) rely on multiple channels providing the same or 
similar functions, often with some voting mechanism (see sections 
3.2.1 and 3.2.2) determining which output to use.

3. ASYMMETRIC ARCHITECTURES 
(see section 3.5) employ asymmetric decompositions to reduce the 
complexity of some subsystems, e.g., via Doer / Checker (see secti-
on 3.2.3) or Active / Hot Stand-By approaches (see section 3.2.4).

For each candidate architecture, relevant references and the considered variant are stated. If 
applicable, employed generic principles (see section 3.2) and design principles are listed. The 
structure of each conceptual system architecture is described via static modeling, while its beha-
vior is described via dynamic modeling. The level of provided detail is intended to give an under-
standing of the architecture, while very specific details are shifted to the respective appendices.

3.1 COLLECTION PROCESS
In the context of AD, a variety of architectural concepts have been proposed by both commer-
cial and academic players. Many of these are meant to address a specific topic, but do not 
present a complete architecture covering all abstraction levels. Proposals regarding conceptu-
al system architectures can be somewhat tricky:

• Proposals from commercial players are sometimes incomplete, i.e., they only describe the 
concepts and components on a high level, but not how they work and interact in detail.

• Proposals from academic players are sometimes challenging from a commercial perspec-
tive, i.e., they neglect the high cost of implementing textbook redundancy and diversity.

As part of the activities of the Safety & Architecture Working Group, we have screened propo-
sed architectural concepts for their applicability to the conceptual abstraction level.

• When possible, we tried to extract generic underlying principles and cluster similar archi-
tectures.

• When necessary, we filled in missing details (from partial or very generic proposals) ba-
sed on reasonable assumptions to be able to evaluate an architecture’s behavior in 
certain scenarios and ultimately whether system requirements can be met.
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3.2 OVERVIEW OF ARCHITECTURAL DESIGN PATTERNS

Most architectural design patterns in automotive systems come from other safety-critical areas, 
such as aviation. It is questionable whether these well-known approaches are sufficient for safe 
autonomous driving. In this context, we have found that the safety concepts for AD Intelligence 
have evolved in recent years. While ensuring reliability and availability through redundancy 
remains the most important strategy, Level 4 AD systems require different structural elements 
(i.e., subsystems¹⁵), organized in a hierarchical or distributed way for distinct safety responsibi-
lities. We also recognize that the focus of current approaches is on functional safety, while 
some work is starting to include SOTIF ( [30]).

This section provides an overview of the most common redundancy-based architectures. Alt-
hough we focus on high-level safety concepts, it is noteworthy to consider that the architectural 
patterns are also applicable at lower levels of abstraction, depending on specific use cases. 
Furthermore, additional safety mechanisms, such as sensor fusion for the perception subsys-
tem, are a well-established approach of AD systems to avoid the single failure and weaknesses 
of any individual sensor. The main challenge is to trade off complexity and performance while 
ensuring that the implemented safety mechanism covers relevant faults and functional insuffi-
ciencies. Other design patterns, such as watchdogs and sanity checks, are not explicitly men-
tioned as they are considered detailed implementations.

3.2.1 ARBITRATION AND VOTING

With two or more inputs coming from homogeneous (symmetric) or heterogeneous (asymme-
tric) subsystems, an element named “arbiter” acts as the decision maker that defines the output. 
The design of such an arbiter requires high safety integrity and low complexity.

There are different implementations of arbitration depending on the type of input data, the 
number of available input interfaces and the voting criteria. These aspects depend on the re-
sponsibility of the arbiter and are decisive for the performance of the safety measures. Subsys-
tem independence (e.g., diversity in generating inputs) is fundamental to manage common 
cause failures.

Majority voting can be considered a special case of arbitration.  

Applicability:

• The original approach, i.e., binary inputs, odd number of subsystems, and majority voting, 
can be considered the simplest case. Such a simple arbiter could be used, for example, to 
determine whether to enable a safety channel or path.

Subsystem 2 Arbiter (Voter)

...

Subsystem 1
output

output

¹⁵ A subsystem can refer to an element, a set of elements, or a channel. The channel we are considering here refers to the subsystem composed of a 
sensor set, a perception element, and a planning element (i.e., the first two stages of the so-called "sense, plan, act" model of autonomous 
driving).
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• For more complex cases, such as continuous-valued signals (e.g., acceleration) or hetero-
geneous components, a more sophisticated implementation is required. This problem is 
comparable to inexact agreement.

• Some examples of arbitration criteria are plausibility checks, acceptance tests, risk estima-
tion or scenario-based prioritization.

• An aspect to consider is the potentially high development costs for the independent sub-
systems.

• To ensure fail-operational arbitration, multiple arbiters may be considered.

3.2.2 AGREEMENT

Redundant subsystems called “participants” interact to reach a decision, without an arbitration 
component. The agreement pattern is based on a closed loop approach and may consist of 
multiple rounds of information exchange between all (available) participants.

Applicability:

• Like voting, agreement is applicable for redundant subsystems.

• Agreement mechanisms are also used for the detection and isolation of asymmetric faults.

• Like voting, there are challenges related to the implementation of agreement, especially 
those related to the type of input data (e.g., inexact agreement). Solutions for this can be 
the use of convergence algorithms, confidence rating, approximate outputs considering a 
given precision and allowed system accuracy.

• Agreement algorithms might not be viable when there are numerous acceptable decision 
candidates that might differ significantly due to the use of nondeterministic algorithms.

3.2.3 DOER/CHECKER (OR CONTROL/MONITOR)

One subsystem, the “doer”, performs a function while another, the “checker”, monitors it. The che-
cker requires higher safety integrity and lower complexity than the doer. The doer implements the 
nominal capabilities of the system.

Arbiter (Decider)

Checker

Doer
output

yes/no
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¹⁶ This use case was intended to support hands-off / feet-off / eyes-off driving in traffic jam scenarios (up to 60 km/h) on highways. In case of a 
failure of the system, the driver was supposed to take over within ~10 seconds.

There are different implementations of Doer/Checker depending on the comparison strategy 
and how monitoring is performed. Additional self-checks and cross-checks may be required to 
prevent single-point failure in the system. Subsystem independence (e.g., separate hardware) 
is required for high reliability and availability.
Applicability:

• This approach is useful if an appropriate simpler monitoring component is feasible.

• Some factors such as time lags and computational accuracy might affect the performance 
of the monitoring function.

• The original doer/checker pattern, as shown in the figure, is only applicable to fail-safe systems.

3.2.4 ACTIVE AND HOT STAND-BY (OR DUPLEX PATTERN)

Two homogeneous or heterogeneous subsystems operate continuously in parallel while only 
one of them is active at any given time. A fault detection mechanism acts as a switch between 
the subsystems. The fault detection mechanism requires redundancy (e.g., cross-checking) to 
avoid single-point failures.

The component acting as comparator and fault detector shall be designed carefully to ensure 
high fault coverage. Some methods used to identify the faulty subsystem are acceptance test 
and hardware testing (for details, see [31]).

Related alternatives are:

• Warm Stand-By: the reserve subsystem runs in idle state, and

• Cold Stand-By: the reserve subsystem is normally off.

Applicability:

• This approach is suitable for functionalities with strict time constraints.

• The decision between hot, warm, or cold redundancy depends on the required safety le-
vel, response time, and power consumption.

3.3 MONOLITHIC ARCHITECTURES
3.3.1 SINGLE-CHANNEL ARCHITECTURE
In 2015, Audi gave some insights into their then-next generation HW and SW platform [32], in-
tended to cover more complex ADAS use cases and a novel SAE L3 Traffic Jam Pilot AD use 
case¹⁶. While the described architecture was designed with a different use case in mind than 
outlined in Section 1.1, it can remain relevant to make the differences from other architectures 
more apparent.

Arbiter (Switch)

Hot-Standby

Active
output

output
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3.3.1.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
Historically, most ADAS were a collection of dedicated ECUs and sensors for every individual 
function or use case, e.g., Adaptive Cruise Control (ACC), Light Assistant, Parking Assistant, Top 
View, etc. As more such systems were added to vehicles, cost and complexity scaled poorly and 
the performance of the provided functions remained limited, since fusing the information from 
the distributed sensors proved to be difficult.
Starting around 2015, the leading players in the automotive industry started working on more 
centralized platforms that decoupled specific sensors from specific ADAS functions by introdu-
cing a centralized sensor data fusion layer in-between (see Figure 11), with the intention to gain 
several benefits:

• Multiple control units could be integrated into one unit and their HW resources shared.

• A more modular architecture (due to decoupling of SW from HW) could allow updating 
functions or deploying additional ones over the lifetime of the vehicle.

• The central environment model could reduce redundancies and make consistent informa-
tion available to many applications.

• Improved recognition of the vehicle’s surroundings and a more detailed environment mo-
del gained through multi-sensor data fusion could support more complex SAE L2 (ADAS) 
use cases and even novel SAE L3 use cases.

At the time, developing an integrated HW and SW platform capable of hosting a large number 
of applications with widely varying computational needs (e.g., FPGA or GPU) was challen-
ging. Table 3 shows an overview of the different HW components in the Audi zFAS system and 
the hosted functions.

Figure 11: Centralized sensor data fusion layer in the Audi zFAS platform [33].
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TABLE 3: HW COMPONENTS IN THE AUDI ZFAS PLATFORM [33].

3.3.1.2 STRUCTURAL DESCRIPTION
The proposed architecture is monolithic, i.e., it only consists of a single FCU with interfaces 
identical to the external interfaces of the AD Intelligence.

3.3.1.3 BEHAVIORAL DESCRIPTION
Due to its monolithic nature, the behavior of the system is straightforward:

• It processes received sensor data into a consistent environment model.

• It then periodically generates trajectories and corresponding actuator setpoints.

• These setpoints are then sent to the Actuator System.

• If an internal fault is detected, the system remains silent.

Due to the underlying use case of a traffic jam pilot (low speed and a restrained environment), 
the safety requirements are noticeably different from most AD use cases with respect to integrity 
(i.e., complex functionality does not need to reach the highest ASIL) and availability (i.e., the 
system does not need to provide complex fallback functionality in case of a fault).

3.3.1.4 INSIGHTS INTO TESLA’S FSD SYSTEM
Tesla’s “Full Self Driving” (FSD) seems to be a more recent implementation of a single-channel 
architecture. Despite the suggestive label and marketing as a highly autonomous system, FSD 
and its precursors “Autopilot” and “Enhanced Autopilot” are formally sold as SAE L2 systems, 
where the driver needs to supervise and be ready to take control of the vehicle at any time. Whi-
le the Autopilot function is meant as a (semi-)autonomous highway driving system, the FSD sys-
tem aims to include urban roads. Technical information is made available by Tesla in the course 
of yearly “AI Days”, e.g., [34] and shows in considerable detail that the system is (at the time of 
writing) purely camera-based and composed of multiple complex machine learning modules 
that are specialized in various elements of the world model (objects, lanes, …). A single, com-
mon planning module on top is responsible for computing the actual vehicle trajectory and con-
trolling the vehicle motion. There is no mention of any functionally redundant blocks like super-
vision, or of fault-tolerance mechanisms like comparisons or voting on the SW architecture level. 

With the introduction of the so-called “HW3” generation of the central driving computer, Tesla 
deployed the core SOC twice, in a parallel redundant fashion, stating that if either one were to 
fail, the redundant component would take over. It remains unclear, however, if that redundan-
cy is exploited on a functional and logical architecture level – quite likely the same single-chan-
nel FSD stack is essentially intended to be deployed twice, and the redundant SOC is meant to 

Automotive-qualified embedded microcontroller
• Various functions (up to ASIL D)

• Interface to the rest of the vehicle

FPGA
• Sensor fusion

• Sensor processing

Image processing SoC

• Image processing

• Computer vision

• Driver monitoring

Front camera image processing SoC
• Computer vision

• Emergency braking
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just address random faults in the underlying electronic components, like core SOC failures and 
power supply outages, but not functional deficiencies or systematic implementation faults. The-
refore, the architecture may still be considered as monolithic single channel logically.

In unconfirmed information, [35] states that ultimately redundancy has been dismissed in HW3 
and the second SOC used to increase computational performance instead. With a new “HW4” 
generation, redundancy of SOCs would be introduced again and augmented by radars (which 
were dismissed as unnecessary earlier). This might open up the potential of true SAE L3 and 
higher operation to Tesla and could also indicate a step away from the apparent single-chan-
nel architecture.

3.4 SYMMETRIC ARCHITECTURES
3.4.1 MAJORITY VOTING ARCHITECTURE
This section follows the specific variant of majority voting called “triple modular redundancy 
(TMR)” with a particular focus on the redundancy aspects of the architecture. As described in 
[36], this type of redundancy is commonly used in very high reliability systems such as those used 
in aerospace. To the authors’ knowledge, a strict application of this architecture in the AD do-
main has not yet been officially published. Still, we include it in the report, as the voting para-
digm is an obvious and tempting approach for AD systems, and its properties therefore deserve 
a closer look.

3.4.1.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
Triple modular redundancy is a specific implementation of “N-Modular Redundancy” where 
you have three identical channels that produce results that are fed to a “voter”. The voter is 
responsible for looking at the results from the three channels and deciding which result is likely 
to be correct.

• The voter operates based on the assumption that common mode failures are much less li-
kely than single-event errors. This implies that the majority is correct. Therefore, if the voter 
observes two identical results and one dissimilar result, it will assume that the dissimilar 
result came about through a failure and the two identical results are in fact correct.

• In the strictest sense, only identical results can form such a majority. This can be relaxed to 
some extent to “sufficiently similar” results via inexact voting approaches.

3.4.1.2 STRUCTURAL DESCRIPTION
The proposed conceptual architecture consists of four FCUs:

• Three independent channels computing results¹⁷.
• The independent voter responsible for deciding which is the correct result¹⁸.

The interfaces to the three channels are identical, and each output of the channel is fed to the 
voter. The results of the voter are then fed to the actuating systems of the vehicle.

¹⁷ For exact voting, these channels will most likely need to be implemented in an identical way unless the provided functionality is very simple and 
straightforward. Even then, replica indeterminism may cause issues. For inexact voting, some degree of diversity (to prevent common cause faults) 
may be allowed.
¹⁸ Some advanced versions of TMR (e.g., triple-triple) include multiple voters, but we do not consider this here.
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3.4.1.3 BEHAVIORAL DESCRIPTION
In the proposed architecture, each channel would contain all functions required to implement 
the entire AD system. This would include taking the sensors of the vehicle as input, generating 
an environment model, trajectories, and actuator setpoints, checking whether the vehicle is 
operating inside the ODD, etc. Like the linear / monolithic architecture, each channel would:

• Process received sensor data into a consistent environment model.

• Periodically generate trajectories and corresponding actuator setpoints.

• Send these setpoints to the voter (or ultimately to the Actuator System).

• Remain silent if an internal fault within the channel is detected.

The behavior of the voter can be summarized in the below table of states. The table has been 
distilled into the minimum number of unique states and does not include every permutation.

From this table we can observe the simplicity in the voter’s design. There is a minimum number 
of possible combinations the voter must consider. We also see some of the majority voting ar-
chitecture’s major flaws. The design of majority voting relies heavily on the assumption that the 
failure modes are unique and that common mode failures are unlikely. It is also possible for the 
voter to get into a state where no decision can be made if each of the identical channels pro-
duces a different result. Concretely, while simple problems may have a single “best / correct” 
solution, more complicated or even complex problems may have multiple “good” solutions, 
which can differ fundamentally (e.g., evading left or right). This may be more pronounced in 
the automotive domain (busy road) than the aerospace domain (empty sky). See quote from 
[26] in the next paragraph. This would need to be treated as a fault scenario and a predeter-
mined recovery action would take place.

Quote from [26]: Provably correct Decision System: Whenever two independent redundant sub-
systems are involved in a decision in a complex environment there is the possibility of two diffe-
rent correct outcomes. The introduction of a third subsystem will only mask a single fault if the 
involved systems are replica determinate [37].

3.4.2 CROSS-CHECKING PAIR ARCHITECTURE
At the time of creation of this document, the experts of the working group were aware of a 
symmetric approach proposed by one company specialized in automated driving [38]. The 
group wanted to investigate this approach further, but did not find public information. The 
group decided to keep this short section so that the investigation could potentially be continued 
at a later point in time.

Channel A result Channel B result Channel C result Voter decision

Result A Result A Result A Result A

Result A Result A Result B Result A

Result A Result B Result C No decision – fault
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3.5 ASYMMETRIC ARCHITECTURES
3.5.1 CHANNEL-WISE DOER / CHECKER / FALLBACK (DCF) ARCHITECTURE
This section discusses the architecture proposed by Kopetz [26], which can be considered a 
specific combination of the Doer / Checker and Active / Hot Stand-By (see section 3.2) approa-
ches for decomposition with respect to integrity and availability, respectively. In this case, the 
decomposition is done for entire processing channels. Involved design principles and their re-
spective intentions are:

• Minimizing interactions between the different subsystems (in this case entire processing chan-
nels) is intended to reduce complexity and to prevent emergent behavior (see also: Avoidance 
of emergent behavior).

• Employing a Time-Triggered Architecture (TTA) is intended to reduce ambiguity between 
late vs. missing messages and to prevent the formation of mutually inconsistent time domains.

3.5.1.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
The channel-wise Doer / Checker / Fallback architecture is based on a combination of the Doer 
/ Checker approach (for decomposition with respect to integrity) and the Active / Hot Stand-By 
approach (for decomposition with respect to availability). These are outlined in sections 3.2.3 
and 3.2.4, respectively. 

The conceptual architecture of the variant proposed by Kopetz is based on a Time-Triggered 
Architecture (TTA), i.e., scheduled task execution and communication across all subsystems. 
This simplifies the Doer / Checker and Active / Hot Stand-By decompositions:

• Missing and delayed messages between channels are treated the same way.

• Latencies due to communication between channels and the redundancy management 
can be bounded and reduced.  

As described in [26], the proposed conceptual architecture also requires sufficient indepen-
dence between channels to prevent common cause faults¹⁹. This may necessitate some diver-
sity in HW and SW implementations (to be further discussed in Section 5).

3.5.1.2 STRUCTURAL DESCRIPTION
The proposed conceptual system architecture consists of four subsystems (see Figure 12), namely:

1. The Computer-Controlled Driving Subsystem (CCDSS) controls the vehicle under nominal 
conditions, i.e., it is similar to some SAE L2 systems[26]²⁰. It periodically produces trajecto-
ries (e.g., timed waypoints) and actuator setpoints (e.g., desired acceleration / decelerati-
on and curvature values for steering, powertrain, and brakes) and transmits these to the 
MSS and the FTDSS.

2. The Monitoring Subsystem (MSS) detects unsafe trajectories produced by the CCDSS, 
whether nominal conditions prevail, and whether the CEHSS is still alive.

3. The Critical Event-Handling Subsystem (CEHSS) controls the vehicle under off-nominal 
conditions. It only aims to bring the vehicle into a safe state, i.e., to execute an MRM, but 
must be able to do that even after an ODD exit. It periodically produces trajectories and 
actuator setpoints and transmits these to the FTDSS.

4. The Fault-Tolerant Decision Subsystem (FTDSS) decides which setpoints are forwarded to 
the Actuator System. It consists of two identical instances to achieve fault tolerance.

¹⁹ For complex subsystems (i.e., the CCDSS, MSS, and CEHSS described in the subsequent section) this may necessitate diverse SW implementations. 
For sufficiently simple subsystems (i.e., the FTDSS) with fully verifiable SW, no diversity is necessary.
²⁰ The other subsystems effectively take over the tasks performed by a human driver in an SAE L2 system and are collectively called Safety Assurance 
Subsystem in [26]. 
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A more detailed structural description of the subsystems is given in Appendix B: Detailed des-
cription of the channel-wise DCF architecture.

Figure 12: Block diagram of the channel-wise Doer / Checker / Fallback conceptual architecture. Main information flow is indicated by gray arrows, 
supplementary information flow by green arrows.

3.5.1.3 BEHAVIORAL DESCRIPTION
Table 4 describes the behavior of each of the subsystems in more detail. A corresponding acti-
vity diagram for the AD Intelligence is shown in Figure 13 (showing the time-driven tasks with 
the common main cycle time of the AD Intelligence in the fault-free case). Consensus in the 
Actuator System (compare: AD Intelligence output consistency) is straightforward: actuators 
follow the received setpoints with the higher priority, i.e., they prefer CCDSS setpoints over 
CEHSS setpoints.

TABLE 4: BEHAVIOR OF THE SUBSYSTEMS OF THE CHANNEL-WISE DOER / CHECKER / FALLBACK 
ARCHITECTURE.

Subsystem Behavior

CCDSS

• Produces trajectories and actuator setpoints (ActuatorData) for nominal 
conditions.

• Sends ActuatorData to MSS and FTDSS.

• Goes into degraded mode (MRM only) if system state demands it (e.g., if 
CEHSS is faulty).

CEHSS
• Produces trajectories and actuator setpoints (ActuatorData) for off-nominal 

conditions (MRM only).

• Sends ActuatorData to MSS and FTDSS.

MSS
• Validates trajectories from CCDSS (safe, same as received by FTDSS).

• Validates trajectories from CEHSS (safe, same as received by FTDSS).

• Sends ValidationResult to FTDSS and MSS.

FTDSS
• Forwards CCDSS and CEHSS ActuatorData back to MSS.

• Selects CCDSS or CEHSS ActuatorData depending on ValidationResult.

• Sends ActuatorData to Actuator System.
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For all four subsystems of the AD Intelligence, task execution and communication are based on 
a time-triggered schedule. If a message is not received in the planned time slot (and has the 
correct iteration counter), it counts the same as if it hadn’t been received at all or if it had been 
received in a corrupted state (e.g., with an invalid checksum).

Transient faults in one of the complex subsystems can occur quite frequently, so the FTDSS is 
constructed to allow rapid back-and-forth switching if necessary²¹. However, unduly frequent 
transient faults are considered indicative of an underlying problem and cause the CCDSS to go 
into a degraded mode (see also G5: Frequent switching).

Figure 13: Sequence diagram of the channel-wise Doer / Checker / Fallback architecture 
in the fault-free case.

A more detailed behavioral description of the subsystems is given in Appendix B: Detailed de-
scription of the channel-wise DCF architecture.

3.5.1.4 RELATED EXAMPLES: BMW SCALABLE AV PLATFORM ARCHITECTURE
In 2020, BMW unveiled some details on its scalable AV platform architecture [39] [40], intended 
for SAE L3 AD features such as a Highway Pilot system similar to the one outlined in section 1.1 
- Reference AD use case. The published materials include an overview of the planned HW ar-
chitectures for different offering levels for the then-planned SOP 2021 (see Figure 14), as well as 
a conceptual system architecture for the SAE L3 system, dubbed hPAD (see Figure 15).

Based on the structural description in these materials, the conceptual architecture proposed by 
BMW shares similarities with the channel-wise Doer / Checker / Fallback architecture. Going by 
the depicted subsystems and high-level functional blocks, the “MAIN” channel appears similar 
to the “Doer”, the “SAFE” channel similar to the “Checker”, and the “SAFE fail-degraded” chan-
nel similar to the “Fallback”. However, the “SAFE” channel also seems to produce trajectories 
and some cross-checking between “MAIN” and “SAFE” appears to occur, as well.

²¹ If transient faults (e.g., erroneous object detections) are of very short duration, e.g., a low single-digit number of frames / iterations, the FTDSS will 
switch to the CEHSS for just those few frames and back to the CCDSS as soon as it recovers. Though this may occur relatively often, it is not 
necessarily noticeable to the passengers.
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As the published behavioral description is incomplete, we decided not to include this candida-
te conceptual system architecture in our evaluation. This avoids proceeding based on specula-
tion and assumption.

Figure 14: Planned HW architectures for different offering levels as proposed by BMW [40].

Figure 15: Conceptual architecture proposed by BMW for an SAE L3 system [39].

3.5.2 LAYER-WISE DOER / CHECKER / FALLBACK ARCHITECTURE
In [41], a multi-channel approach combined with the doer/checker pattern is presented in a 
patent as a safety architecture for AD. This section summarizes the most relevant aspects of this 
invention.
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3.5.2.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
Doer / Checker pairs are used as the main architectural pattern. The primary Doer/Checker 
pair acts during normal mode, and a secondary Doer/Checker pair provides a degraded 
mode of operation in case the primary pair fails. Additionally, the arbiter “Priority Selector” 
determines the output to be sent to the actuators (see Figure 16).

Figure 16: Generalization of the Layer-wise Doer / Checker / Fallback architecture (figure taken from [41])

3.5.2.2 STRUCTURAL DESCRIPTION
The pattern shown in Figure 16 can be repeated for different layers or stages, as shown in Figu-
re 17 for planning and trajectory execution.  

The Safing channel (i.e., the secondary Doer/Checker pair) is more elaborate than the Primary 
one. It includes a “Permissive Envelope” signal, which indicates a reference used to validate the 
Primary output. For example, the safing trajectory executor unit may generate a permissive en-
velope that specifies a maximum acceleration rate. The Safing Safety Gate not only produces 
the Permissive Envelope but also evaluates whether it is appropriate. 

The Primary and Safing Units used to generate outputs in both channels (i.e., the doers) may 
have low integrity levels and may each fail arbitrarily. The two “safety gate” components (i.e., 
the checkers) are responsible for checking the outputs of the Primary and Safing Units. They are 
high-integrity components, but they fail silently if these outputs are unsafe. 

The Priority Selector must continue to operate in the presence of failures to deliver either the 
Primary or Safing output. The Priority Selector may fail silently so long as that failure triggers an 
emergency stop. This component is simpler than the safety gates, so that a great deal of effort 
can be spent on its verification to achieve the required high level of integrity.

The optional “overlay” channel can be used as an additional fallback mechanism for testing 
purposes.
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3.5.2.3 BEHAVIORAL DESCRIPTION
Various implementation alternatives are mentioned in the patent (e.g., time-triggered vs. 
event-triggered architecture). Depending on the choice, the system will behave differently. But 
in principle, the following applies: 

• If an unhandled failure occurs in either the Primary or the Safing Unit, the architecture 
remains operational and continues to meet the safety goals by means of the correspon-
ding Safety Gates. 

• If both the Primary Unit and the Safing Unit fail, the system remains safe by recovering ac-
tions performed by the downstream stages (e.g., executing an emergency stop).

• In a cyclic (i.e., periodic, deterministic) way, the checker of the fallback channel (i.e., the 
Safing Safety Gate) buffers a safe trajectory and validates it against the current operatio-
nal situation. If the Safing Unit for the planning stage malfunctions, the last safe trajectory 
is used before the vehicle comes to a stop.

• If the Safing Safety Gate for the planning stage fails, both Primary and Safing outputs are 
inhibited. The downstream stage gets no inputs, and thus sends no outputs, which causes 
the execution of the last safe trajectory.

• If the Safing Safety Gate for the trajectory execution stage fails, both Primary and Safing 
output are inhibited, which causes the Priority Selector to execute an emergency stop

.

Figure 17: Architecture of a prototype applying Layer-wise Doer / Checker / Fallback 
(figure taken from [41])
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3.5.3 DISTRIBUTED SAFETY MECHANISM ARCHITECTURE
This section discusses the Distributed Safety Mechanism (DSM) architecture proposed in [42] 
[43]²², which can be considered a distributed variant of the Doer / Checker / Fallback approach. 

3.5.3.1 UNDERLYING CONCEPTS AND DESIGN PRINCIPLES
The DSM architecture has three channels:

• The nominal channel, consisting of the function (FUN) controlled by one or more sensor 
and function safety monitors (SFM).

• The emergency channel, which is controlled by one or more controller safety mechanisms 
(CSM).

• The safety channel, which is controlled by the vehicle safety mechanism (VSM).

Compared with the Channel-wise Doer / Checker / Fallback (DCF) architecture variant propo-
sed by Kopetz (see 3.5.1), there is a rough correspondence between:

• FUN and CCDSS,

• SFM and MSS,

• VSM and CEHSS.

However, the redundancy management itself is different: whereas in the Kopetz variant there 
is a smart switch (FTDSS), in the DSM all subsystems apart from the controlling subsystem are 
silenced. 

Another relevant difference to the Kopetz variant is that the CSM supports the additional emer-
gency stop mode as a further fallback layer, in which no sensors are used, i.e., a braking within 
the latest available trajectory evaluated as safe takes place. Alternatively, this level can also 
be implemented in another way, e.g., on the actuator-ECU side.

The DSM is in fact able to deal with some combinations of multiple faulty components due to a 
decentralized monitoring and response. No redundant components (like FTDSS) are required, 
but a strong safety responsibility is assigned to the system level.

In the formally verified model presented in [43], it is assumed that a distributed protocol allows 
the communication of the actuator setpoints of one and only one of the channels, depending 
on the current system state. Five systems states, each of them representing an operating mode 
(i.e., nominal, detour, comfort setup, safe stop, and emergency stop) were considered for the 
DSM architecture.

Figure 18 shows the degradation concept defined for the DSM behavior that covers the diffe-
rent system states and fault-triggered transitions. For the nominal mode, the function (FUN) 
controls the vehicle with high system availability and resilience (i.e., fault tolerance). The DSM 
aims to increase resilience to multi-point faults via a multi-layered monitoring concept.

²² An open-access version of this paper is available at https://arxiv.org/ftp/arxiv/papers/2011/2011.00892.pdf
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Figure 18: Degradation concept for the DSM presented in [43]

Regarding the redundancy and diversity aspect, the DSM architecture relies on redundant 
communication networks (primary and secondary ones). Additionally, in contrast to the nomi-
nal channel, the safety channel implements the AD function using simpler algorithms and data 
coming from fewer safety sensors.

A key design principle of the DSM is the highly scalable architecture due to the separation of con-
cerns and the distributed monitoring approach. Inspired by the E-GAS layered monitoring con-
cept [44], it includes safety monitoring components at function, controller, and vehicle levels. With 
this property, the nominal channel can be easily extended to add more functionality or perfor-
mance features, without affecting considerably the rest of the system.

High reliability and determinism are required for the system-level distributed communication 
protocol to support the safety mechanisms.
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3.5.3.2 STRUCTURAL DESCRIPTION
The DSM architecture consists of 3 safety monitor types. There is a clear separation of safety 
concerns defined by specific responsibilities and associated fault modes for each of these mo-
nitors. Table 5 summarizes the most relevant characteristics and some implementation details 
given in the paper. 

Note that the CSM and the VSM are cross-checking each other (i.e., challenge-response pro-
tocol), and therefore additional safety mechanisms at the communication protocol level are 
required.

TABLE 5: SAFETY MONITORS OF THE DSM ARCHITECTURE

Monitor Responsibility Safety 
Integrity Characteristics

Sensor and 
Function Monitor 
(SFM)

Safety of AD functions 
(e.g., SOTIF)

Low 
(e.g., 
ASIL B)

• Monitors the status of the 
function FUN.

• Can act as an ODD checker.

• Runs on the performance 
cores of the function con-
trollers

Controller Safety 
Mechanism 
(CSM)

Safety of the function 
controller, hardware, 
and platform software 
(hypervisor, OS, firm-
ware) 

Medium 
(e.g., 
ASIL C)

• Monitors all the function 
controllers and the VSM 
layer.

• It has access to the primary 
network channel and can 
send control commands to 
the vehicle actuators (de-
tour or emergency stop).

• Can compare channels’ 
outputs to identify inconsis-
tencies between the nomi-
nal and safety channels.

• Runs on the safety cores of 
the function controllers.

Vehicle Safety 
Mechanism 
(VSM)

Vehicle safety, inclu-
ding monitoring of data 
and power networks’ 
integrity 

High 
(e.g., 
ASIL D)

• Monitors the CSM, the safe-
ty sensor data, and the two 
communication networks.

• Can maneuver the vehicle 
via the secondary network, 
using the safety sensor data 
(comfort or safe stop).

• Runs on a separate safety 
controller.

• Fails silently.
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Figure 19 shows a simplification of the structure and the most relevant data flows of the DSM 
architecture. As can be seen, the architecture includes a dedicated set of sensors for the safety 
channel (VSM controlling the vehicle) which is required for a safety maneuver (i.e., comfort or 
safe stop operating modes). 

There are interfaces playing a key role for detecting and controlling faulty component behavi-
or. For example, in case of a fault in the function monitor (SFM), the CSM triggers a turn-off of 
the function and reports this to the VSM to enter the comfort stop mode. Additionally, for the 
mode change from nominal to detour (see Figure 19), if the VSM fails, the CSM takes over the 
control of the vehicle. 

Figure 19: High-level architectural view of the DSM. The Actuators receive one of three possible signals, depending on the current system state.
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3.5.3.3 BEHAVIORAL DESCRIPTION
Besides the degradation concept mentioned above, exemplary sequence diagrams presented 
in [43] describe the expected behavior of the DSM architecture (see Figure 20 and Figure 21).

Note that the safety monitors are performing different monitoring tasks at the same time. During 
fault-free nominal mode, the VSM runs simultaneously in the redundant safety channel proces-
sing the safety sensors without sending any control command to the actuators. The FUN com-
ponent is controlling the vehicle. The CSM and the VSM monitors cross-check each other 
through the primary network using a challenge-response protocol.

Once a fault has been detected, the system activates a degraded operation mode. In Figure 
21, an extreme case is illustrated. First, a sensor of the nominal channel and the SFM fail, trig-
gering the activation of the safety channel for a comfort stop. But then, the VSM (i.e., the safety 
channel) is also failing. As a result, the CSM (i.e., the emergency channel) sends braking com-
mands to the vehicle actuators to stop the vehicle as quickly as possible without using any sen-
sor data.

Figure 20: Sequence diagram depicted in [43] of the DSM in nominal mode.
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Figure 21: Sequence diagram depicted in [43] of the DSM in case of multiple faulty components.
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4 ARCHITECTURE 
EVALUATION
4.1 EVALUATION PROCESS

Section 3 presented architectures that strive to be practical solutions to the question of how, 
conceptually, an automated driving architecture should be designed. The architectures are not 
limited to a specific use case of automated driving, and for the most part they do not explicitly 
target a specific design criterion, like those described in section 2, although without doubt the 
safety and availability of the ADI was a key consideration in the design of most candidate ar-
chitectures.

In this section we seek to describe the merits or potential drawbacks each architecture might 
show with respect to the evaluation criteria. To form an unbiased basis for the evaluation, we 
first start with a generic evaluation of each architecture in section 4.2, by listing a number of 
observations related to each criterion, i.e., properties of each architecture perceived by the 
Safety and Architecture Working Group team and (if not obvious) their significance for the spe-
cific criterion.

As the second step, we give the concrete evaluation of the architectures under the defined re-
ference use case of an SAE L4 Highway Pilot function in section 4.3. To this end, we evaluate 
the significance of each criterion for that use case – as some will be must-haves for the concep-
tual architecture, while others might be of lesser significance or merely nice to have. Next, we 
directly compare the architectures, considering the observed properties from the generic eva-
luation and inferring merits or weaknesses with respect to each evaluation criterion, and finally 
ranking them under the criterion.

While some findings may be of principle nature and not easy to overcome, for others the con-
ceptual nature of the architectures and the high level of their descriptions may leave room to 
define countermeasures against weaknesses in a further, more detailed design step. Also, de-
pending on the particular use case and environment, the relative significance of the evaluation 
criteria may change, and criteria might be modified and/or added. It is therefore important to 
emphasize that the evaluation that we provide is not intended as an absolute and final judge-
ment. Rather, it may be understood as a blueprint for the readers of this report for how to ana-
lyze an architecture, identify deficiencies, and derive improvement measures in a systematic 
way. 
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4.2 GENERIC EVALUATION
4.2.1 EVALUATION OF THE SINGLE-CHANNEL ARCHITECTURE
4.2.1.1 AVAILABILITY

4.2.1.2 RELIABILITY

Degradation scheme

Fail-silent only. In case of a fault, no complex fallback functionality is provided.

• No possibility of switching to a degraded mode which offers an MRM.

Scalability towards higher availability

Pattern does not support functional degradation.

• There are no redundant channels that can support nominal function availability.

• There are no fallback channels that can provide a DDT for achieving an MRC 
(MRM).

Diagnostics scheme

System remains silent when faults are detected.

• There are no degradation measures that can be triggered by the detection of 
faults.

Availability of the system

Monolithic design pattern: The ability to provide DDT in both nominal and failure conditi-
ons is dependent on availability of a single FCU with interfaces identical to the external 
interfaces of the AD Intelligence. 

• The lack of a redundant source of the DDT means that single-point faults can lead 
to failure – and therefore the unavailability – of the entire AD intelligence.

• To mitigate (but not eliminate) the vulnerability to single-point faults, redundancy 
measures within the internal implementation of the subcomponents could be att-
empted.

Availability of nominal function

A single trajectory result is generated from a single sensor fusion module and executed by 
the actuator system.

• Potentially lowest base failure rate from low HW and SW complexity.

• The absence of redundant results and fallback paths makes the pattern prone to 
false negatives/false positives and other functional deficiencies that cannot be 
compensated for.

• The lack of fallback puts pressure on the complex functionality to reach the highest 
possible ASIL.
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4.2.1.3 CYBERSECURITY

4.2.1.4 SCALABILITY

4.2.1.5 SIMPLICITY

Number, complexity, and performance of subsystems

Superficially, the pattern appears simple, but the implementation complexity could be 
significant if use-case requirements are high.

• High development costs may be necessary for a single channel to offer a complex 
functionality that reaches the highest possible ASIL.

Interactions with external systems

Communication to external networks for updates can be expected.

• If implementation complexity becomes high to meet all functional requirements with 
a single channel, it may not be possible to keep the frequency of updates low, 
which in turn makes the usage of more secure update mechanisms less feasible 
(OTA may be required instead). 

Scalability towards differing offering levels

Pattern does not support re-using existing subsystems.

• It is only feasible for this pattern to contribute to scaling strategy by being an exis-
ting subsystem that can be re-used by a more elaborate architecture pattern (e.g., 
provide the fallback channel).

Interactions between subsystems

Availability of the entire DDT is dependent on one channel.

• Lack of SW diversity results in a lack of diverse cybersecurity access paths. If the one 
channel is compromised, the entire DDT is jeopardized.

Required level of diversity

There are no clearly separated subsystems in this pattern.

• Redundancy measures within the internal implementation need to be attempted to 
offer the highest possible functionality.

• No independent development and integration of additional channels.

Complexity of validation 

There are no clearly separated subsystems in this pattern that require independent 
verification.

• Potential of high HW/SW complexity increases the possible effort required for 
review, test, analysis, etc.

• Absence of other channels eliminates necessity of integration verification.
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4.2.1.6 SAFETY OF THE INTENDED FUNCTIONALITY 

Support to accommodate functional insufficiencies

• A single channel responsible for all SOTIF issues appears to be impractical for L4 
systems unless the ODD is very restricted.

• The monolithic nature of the single-channel pattern means that it is likely to draw its 
high-performance requirement from ML-based modules, and that there is no op-
portunity for further algorithmic/functionality diversity.

• To cover all potential triggering conditions, the use of all possible sensor modalities 
may be necessary to decide about the nominal trajectory. Depending on the type of 
failure and the fault containment unit design, a fallback trajectory may or may not 
be available. The fallback trajectory could be derived from the last known nominal 
one or be predefined.

• Single-channel patterns may require more analysis and testing efforts, indepen-
dently of the use case, because of its intrinsic complexity compared with multiple-
channel approaches.

Support to manage operational conditions

• Due to the lack of redundancy and diversity, this architecture has a very limited ca-
pability to react safely to dynamic operational conditions in general.

• It is assumed that the ODD monitoring functionality is part of the single fault con-
tainment unit. Thus, if it fails, a predefined fallback trajectory or MRM must be used. 
Such a fallback maneuver is used without considering the operational conditions 
and not in an independent way, which can be unsafe.
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4.2.2 EVALUATION OF THE MAJORITY VOTING (M-OO-N) ARCHITECTURE
4.2.2.1 AVAILABILITY

Degradation scheme

The majority voting architecture provides for a controlled degradation of functionality un-
der fault conditions.

• If at least M channels do not produce an identical result, then the voter can either:
▪ Switch the system into its fail-safe state if available
▪ Discard the result and raise a flag to indicate an unsafe condition
▪ Choose an output based on a predefined policy

Availability of the system

The majority voting (M-oo-N) architecture consists of homogenous or heterogeneous hot 
redundancy, and it continues to provide correct results until at least M modules/channels 
have no fault. A channel consists of data acquisition, data processing, and output proces-
sing sub-systems. Additionally, input sensors, voter, and actuators form the complete ma-
jority voting architecture.

• The M-oo-N voting logic is used in the voter component to allow the system to pro-
vide the required functionality in the presence of random faults without losing the 
input data. This ensures the availability of the system compared to single-channel 
architecture.

• The common sensor and the voter could be a result for a single point of failure and 
hence should be carefully designed and tested. The sensor’s and voter’s availability 
is crucial in this concept and hence needs to be implemented in an ASIL D and fail-
operational way. N different sensors and/or voters could be implemented instead, 
with the drawback of increased system complexity.

• The architecture is not appropriate for handling systematic faults. Since the N chan-
nels are identical and could have the same possible systematic fault, the system will 
continue to work, producing invalid data. To overcome this weakness, heteroge-
neous modules that perform the same functionality could be used, with the draw-
back of increased development cost. Additionally, heterogeneous sensors and mo-
dules will result in potentially different (but each correct) outputs that cannot easily 
be voted on. This is probably unavoidable even with identical sensors, as already 
different mounting positions will lead to slightly different world perceptions.
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4.2.2.2 RELIABILITY

4.2.2.3 CYBERSECURITY

Interactions with external systems

It is expected that this architecture will require communication outside of the system. All 
subsystems are likely to require regular updates. As a result, the system would likely be 
connected to a network to perform these updates.

• The voter, sensors and actuators are simple and likely to require less frequent up-
dates, which may thus use more secure update mechanisms.

• The redundant N channels are complex and likely to require updates to fix defects 
or to install improved functionality, which are thus likely to use OTA. Use of OTA pro-
vides an exposed attack surface for gaining remote access to the system.

Availability of nominal functionality

In the majority voting architecture, the voting element plays the main role since it is used 
to find the correct result by performing the M-oo-N voting strategy. The voter needs to be 
designed simple and fault-tolerant.

• To overcome the single point of failure in the sensor (or set of sensors), separate 
ones can be used for each channel. In the case of varying response speeds of the 
sensors (if applicable), this needs to be handled. 

• To overcome the problem of systematic faults, a hardware diversity concept can be 
used in the implementation. In this case, the possible deviation in value or time bet-
ween the correct outputs needs to be taken into consideration in the design of the 
voter.

• If a homogenous implementation (same hardware as well as software) is used for 
all the N modules, this leads to difficulty in handling systematic faults in all modules.

• Coincident faults in multiple channels could out-vote the correct channel. Diversity 
of implementation could help reduce this risk.

Interactions between subsystems

This architecture requires low amounts of data to be exchanged between channels.

• The channels are independent of each other. This can make it harder to corrupt 
multiple channels after an attack on one of them. A security incident can only occur 
if there are multiple attacks on different channels. The voter implementation is sim-
ple and reliable and is thus assumed to be harder to attack.

• Since the N channels are identical, a known implementation vulnerability could be 
exploited in all channels. To overcome this weakness, diverse modules that perform 
the same functionality could be used.
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4.2.2.4 SCALABILITY

4.2.2.5 SIMPLICITY

Number, complexity, and performance of subsystems

This architecture includes a number of complex and high-performance subsystems, which 
interact in a controlled manner.

• The N modules run separately in parallel, hence they have only little influence on 
the executing time compared to the single-channel architecture. The voter adds a 
small delay, affecting the response time from reading the input signal to generating 
the control actuating signal.

• The architecture does not change the level of modifiability compared to the single-
channel architecture, i.e., if one wants to modify the functionality for the M-oo-N ar-
chitecture, the effort will be almost equivalent to modifying a simple single channel.

• The development cost is also comparable to single-channel architecture, since the 
N channels are identical and use the same algorithm and the same software. If he-
terogeneous modules are used to prevent common causes, the effort will scale with 
the number of channels.

• The architecture has a high recurring cost due to the use of N parallel modules. The 
recurring cost is N*100% compared to the single-channel architecture.

• Due to the differences in inputs or differences in the implementation of each chan-
nel, the outputs from each channel could vary slightly even in the case of a unani-
mous decision. This requires an approximate comparison within the voter that may 
be challenging to create and tune correctly.

Scalability towards different offering levels 

It may be possible to carry over components from an existing SAE L2 system.

• The architecture contains identical channels and is thus easily scalable. The reliabi-
lity of the system increases with an increased number of channels.

• The voter can be modified with easy steps to accommodate the new channels in 
the voting policy.

Required level of diversity

This architecture has no subsystems requiring independent development, safety verificati-
on / validation, and integration.

• The N redundant channels are identical and use the same algorithm and the same 
software. Therefore, all of these components would have the same functional requi-
rements, resulting in identical development, verification, and validation. Therefore, 
the development cost is also comparable to single-channel architecture.
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4.2.2.6 SAFETY OF THE INTENDED FUNCTIONALITY 

Support to accommodate functional insufficiencies

• Due to the identical channels, there is a high risk of potential common cause false 
negatives of perception or planning results.

• A majority voting approach does not contribute to addressing functional insufficien-
cies. The diversity of the different channels is the determining factor. An extended 
voting approach which considers the “best” trajectory and other SOTIF-related rele-
vant outputs would be needed. In the case of sufficiently diverse channels, the reso-
lution of conflicts due to inexact voting may be a challenge. 

Support to manage operational conditions

• Very limited capability to react safely to changing operational conditions.

• Like the single-channel architecture, the majority voting approach may not be ca-
pable of adequately handling operational modes other than the nominal one. 

Complexity of validation

This architecture has no diverse subsystems requiring independent verification.

• The N redundant channels are identical and use the same algorithm and the same 
software. Therefore, all of these components would have the same functional requi-
rements, resulting in identical development, verification, and validation.



76 www.the-autonomous.com

4.2.3 EVALUATION OF THE CHANNEL-WISE DCF ARCHITECTURE
4.2.3.1 AVAILABILITY

4.2.3.2 RELIABILITY

Availability of the system

This architecture provides a good degree of fault tolerance. There is a redundant system 
capable of controlling the vehicle under both nominal and failure conditions.

• CCDSS (Computer Controlled Driving Subsystem) has a redundant backup with 
CEHSS (Critical Event Handling Subsystem). Fault-tolerant communication channels 
are available, including a secondary set of AD and ODD sensors. FTDSS (Fault-To-
lerant Decision Subsystem) is driving the Fault-Tolerant Actuator.

• There are no obvious single points of failure.

Availability of nominal functionality

DCF relies on an evaluation of the outputs of CCDSS and safety evaluation of the resulting 
trajectory in MSS. The FTDSS needs to be designed simple and fault-tolerant.

• DCF requires a minimum mix of hardware and software. The resulting architectural 
footprint may result in a lower potential defect rate due to lower complexity in 
CEHSS and FTDSS.

• There is an active checking approach performed by the MSS to evaluate the safety 
of the actuator commands being issued to the CCDSS and resulting trajectory in 
MSS, with the intent being to detect a failure of the CCDSS, allowing a failover to 
occur. This checking methodology is clearly defined, but not proven. Differences 
between CCDSS and MSS world model are minimized by clear time synchronization 
of all sensors.

Degradation scheme

DCF provides for a controlled degradation of functionality under fault conditions.

• Degradation can occur in a controlled manner, depending on the nature of faults 
detected. There are two modes of operation, the second providing a minimum level 
of comfort to the passengers: Full AD mode and an emergency stop when it is no 
longer safe to continue operating.

• There exists full hardware and software redundancy between the primary CCDSS, 
the MSS (Monitoring Subsystem) and the CEHSS. CCDSS and CEHSS redundant sys-
tems are both fully capable of controlling the vehicle autonomously. MSS monitors 
the safety of the setpoints from the CCDSS and the CEHSS via the FTDSS and reports 
a failure to CCDSS and FTDSS. All subsystems would be developed to fail indepen-
dently and thus diversely. A relatively low-complexity CEHSS is capable of an imme-
diate “safety stop” or a “steady moving state” if the CCDSS fail.
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4.2.3.3 CYBERSECURITY

4.2.3.4 SCALABILITY

Interactions between subsystems

This architecture requires low amounts of data to be exchanged between subsystems. 
MSS gets the trajectory planning from CCDSS, setpoints of CEHSS via FTDSS and FTDSS 
gets all actuator commands from CCDSS and CEHSS and the decision about safety from 
MSS.

• CCDSS + MSS are independent of CEHSS, which can make it harder to corrupt ad-
ditional subsystems after an attack on one of those. A security incident can only oc-
cur if there are two different attacks on two of the complex subsystems (MSS, 
CCDSS, CEHSS). 

• FTDSS could be completely free of software or is at least a simple system with a very 
low attack surface. It is the only point where a single successful attack would com-
promise the overall system.

Interactions with external systems

It is expected that this architecture will require communication outside of the system. All 
subsystems beside FTDSS are likely to require regular updates. As a result, the system 
would likely be connected to a network to perform these updates.

• Several subsystems (CCDSS and MSS) are highly complex and likely to require fre-
quent updates to fix defects or to install improved functionality, and are thus likely to 
use OTA. Use of OTA provides an exposed attack surface for gaining remote access 
to the system.

• The other subsystem CEHSS is simpler and likely to require less frequent updates, 
and may thus use more secure update mechanisms.

Scalability towards different offering levels 

It may be possible to carry over components from an existing SAE L2 system.

• The CCDSS and CEHSS have similar functionality and requirements to an SAE L2 
ADAS. Those components could potentially be reused in a lower-tier vehicle with 
only an L2 system, resulting in some cost savings.

• The MSS and FTDSS are specific to SAE L3 or higher. These components would likely 
be developed and manufactured only for the fully functional AD system.



78 www.the-autonomous.com

4.2.3.5 SIMPLICITY

Number, complexity, and performance of subsystems

DCF includes a number of complex and high-performance subsystems, which interact in 
a controlled manner.

• The CCDSS is expected to have very high complexity and require very high perfor-
mance. The MSS is expected to have moderate complexity and high performance, 
i.e., simpler than the CCDSS.

• The CEHSS is expected to have moderate complexity and low performance needs. 
The FTDSS is expected to be small and of low complexity, but fault-tolerant.

• Two or three disjunct sensor sets are required. Although they may be shared partly, 
this adds to the manufacturing cost and complexity and would require additional 
wiring within the vehicle.

• A fault-tolerant communication network is required. Similar to the redundant sen-
sors, this also adds to the manufacturing complexity and wiring needed.

• Due to the high reliability requirements on multiple sets of sensor data inputs, some 
fault monitoring would be necessary for each of them.

Required level of diversity

This architecture has a high number of diverse subsystems fostering independent develop-
ment, safety verification / validation, and integration.

• The CCDSS, MSS, and the CEHSS perform different functions within the vehicle. The 
CEHSS is capable of driving fully autonomously, however it makes use of a different 
set of input sensors than the CCDSS and is intended only for short-term use when 
the CCDSS or MSS are failing. The CEHSS is also expected to be a somewhat sim-
pler control algorithm than the CCDSS. Most likely there would be little commonality 
between the two. Therefore, all three of these components would have very diffe-
rent functional requirements, likely resulting in very diverse development, verificati-
on, and validation.
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4.2.3.6 SAFETY OF THE INTENDED FUNCTIONALITY 

Complexity of validation

This architecture has a number of diverse subsystems requiring independent verification.

• The CCDSS, MSS, CEHSS, and the FTDSS perform different functions within the ve-
hicle. Unit test verification of each independent component within the system would 
require an appropriate test harness to be developed to enable full control of inputs 
to and access to outputs from each component.

• Multiple custom-built integration testing harnesses would be required to verify sub-
sets of the components as they are integrated together. The different components 
would be developed in parallel and would require a staged integration testing ap-
proach. Each subsystem works as an independent fault containment unit.

• Assuming parallel development of all components (except perhaps the CCDSS and 
MSS), it is likely all would perform their certification activities as SEooC. The final 
functional safety concept would then need to integrate all of the different out-of-
context components and validate all of the functional safety requirements for the 
completed system.

• The CEHSS and the FTDSS can be treated as SEooCs, allowing for parallel develop-
ment and largely independent validation, verification, and certification. This is likely 
to significantly lower validation efforts compared to validation just on the level of 
the integrated system.

• The MSS is tightly coupled to the CCDSS as it performs checks on it. This makes a 
joint validation necessary.

Support to accommodate functional insufficiencies

• This architecture can support a high level of coverage of triggering conditions and 
functional insufficiencies if diverse algorithmic implementation is applied.

• The CDSS, MSS, and CEHSS use their own sensors. 

Support to manage operational conditions

• The CCDSS contains mechanisms to detect an ODD exit.

• The MSS also acts as an ODD monitor and checks the CCDSS output for violations 
of the ODD-related assumptions and the prospective trajectory. There is an unresol-
ved risk that the MSS fails to recognize an unsafe trajectory, which may be reduced 
with a sufficiently diverse algorithmic implementation. 

• The fallback channel (CEHSS) does not consider a detailed ODD, but assumes any 
drivable road condition without weather or geofence limitation. 
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4.2.4 EVALUATION OF THE LAYER-WISE DCF ARCHITECTURE
4.2.4.1 AVAILABILITY

Availability of the system

The layer-wise DCF architecture provides a good degree of fault tolerance. There is a red-
undant channel approach which is capable of controlling the vehicle under both nominal 
and failure conditions.

• A primary doer-checker pair (primary channel) controls the vehicle during normal 
mode, and a secondary doer-checker pair (safing [fallback] channel) provides a 
degraded mode of operation in case the primary pair fails. The Primary Unit output 
is checked for its safety by the Primary Safety Gate which fails silently and inhibits 
the Primary Unit output (from being sent to the Priority Selector) if the safety check is 
not OK. The Priority Selector will then select the output of the Safing Unit if safe (and 
thus not inhibited by the Safing Safety Gate), and otherwise perform an MSTOP that 
brings the vehicle to a stop in a low-level way (e.g., braking maneuver in planned 
trajectory).

• Under the consideration of the fail-silence characteristic of the Safing Safety Gate, 
the worst case scenario is avoided, i.e. the case in which this gate is faulty and as a 
result potentially sending erroneous permissive envelopes and at the same time er-
roneously inhibiting the Safing Unit output. Furthermore, considering the fail-opera-
tional characteristic of the Priority Selector, the Vehicle Control is the only single 
point of failure in the architecture.

• The channels are required to be diverse, which excludes common cause failures 
that could simultaneously affect the redundant channels.

• The sensor data of the safing channel is the input to both channels’ safety gates, 
which could possibly inhibit the doer’s and fallback’s output simultaneously, resul-
ting in a less safe MSTOP (coupling factor shared information input) as per the ge-
neralized example figure.

• The primary channel and safing channel seem to have joint perception inputs as 
per the system instantiation figure.

Degradation scheme

The layer-wise DCF architecture provides for a controlled degradation of functionality un-
der fault conditions.

• The Safing Planner provides a trajectory that allows a safe stop, ideally at the side 
of the road. If the Safing Planner’s output itself is checked as “not safe” (in addition 
to the primary planner), the Priority Selector performs an MSTOP (braking maneuver 
in planned trajectory).

• There exists full hardware and software redundancy between the primary channel 
and the safing channel. Both channels are able to control the vehicle in a safe way.

• If the safing channel’s safety gate crashes (fails silently), it is stated to inhibit both 
channels’ output to the Priority Selector, causing an MSTOP, which is a less safe op-
tion than letting the primary channel bring the car to a safe stop.

• It is left open how the Priority Selector shall trigger an MSTOP if it fails silently.
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4.2.4.2 RELIABILITY

4.2.4.3 CYBERSECURITY

Interactions between subsystems

• The clearly separated and independent components make it harder to corrupt ad-
ditional components when one of them is attacked.

• A safety-relevant fault caused by a cybersecurity attack in the primary or safing unit 
will be detected by the safety gates, which will exclude the respective channel from 
arbitration performed by the Priority Selector.

• However, the high number of safety gates throughout the different layers in the pri-
mary and safing channels might pose a cybersecurity risk, as each one's fail silence 
characteristic and output can be manipulated jointly - compromising overall system 
safety through a successful attack to one single safety gate.

Availability of nominal functionality

The layer-wise DCF architecture provides a check for safety of the planned trajectories as 
well as a check of the trajectory execution (if architectural pattern also applied for this 
specific functionality) by safety gates at the respective stage. If a fault is detected in the 
primary channel, where the nominal functionality is allocated, it fails silently and is no lon-
ger considered in the arbitration algorithm of the Priority Selector.

• The safety gates have a high integrity level and false-positives are thus limited. The 
availability of the nominal function depends on the reliability of the primary unit 
itself and is therefore not diminished by the architectural concept.

• The safing channel produces trajectories designed to enable the vehicle to stop 
quickly (still updating its world model). These trajectories will be selected by the Pri-
ority Selector if the primary channel produces or executes unsafe trajectories.

• The introduction of a permissive envelope (which we did not encounter in other ar-
chitectural candidates), qualitatively judged, might reduce reliability.

Interactions with external systems

The layer-wise DCF architecture needs communication outside of the system in order to 
make regular updates possible, especially for the complex primary and safing units, which 
are an entry port for security attacks.

• The underlying simplex architecture provides complex subsystems (units = doers) 
and safety subsystems (safety gates = checkers). Only the complex units of the re-
spective channels are expected to need regular updates that are most feasible over 
the air.

• The safety gates as well as the Primary Selector and Vehicle Control are simpler 
subsystems. They are expected to require less frequent updates, which make the 
usage of more secure update mechanisms feasible.
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4.2.4.4 SCALABILITY

4.2.4.5 SIMPLICITY

Scalability towards different offering levels 

It may be possible to carry over components from an existing SAE L2 system.

• The primary units and safing units (in the respective layers) as doers have similar 
functionality and requirements to an SAE L2 ADAS. There is a good chance that at 
least some components of these units can be reused for SAE L2 ADAS or vice versa.

• The safety gates and the Primary Selector are only useful in SAE L3 and higher sys-
tems, i.e., automated driving systems.

Number, complexity, and performance of subsystems

The layer-wise DCF architecture includes complex and high-performance subsystems as 
well as simple and low-performance subsystems.

• The primary units in the respective layers are expected to have high complexity and 
high performance needs.

• The safing units in the respective layers are expected to have moderate complexity 
and moderate performance needs.

• The safety gates in the respective channels are expected to have moderate 
complexity and moderate performance needs.

• Two disjunct sensor sets are required. This increases the unit costs of the automated 
driving item and its complexity.

• A fault-tolerant communication network on the sensor side is proposed, to enable 
sharing of sensors and help reduce cost. As this is not a decisive nor distinctive ele-
ment of the architecture, we do not evaluate it  further.

• The Primary Selector and the Vehicle Control are expected to have low complexity 
and low performance needs.

• Due to the high reliability on multiple sets of sensor data inputs, some fault monito-
ring would be necessary for each of them.

• The “architectural pattern” is repeated n times through the layers of a system, which 
increases the number of subsystems.

• The “basic architectural approach” is repeated n times through the layers of a sys-
tem, which decreases the complexity of subsystems at the respective stages.
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Required level of diversity

The layer-wise DCF architecture consists of several diverse subsystems requiring indepen-
dent development, including verification and validation.

• The layer-wise DCF architecture is based on diverse sets of fail-silent doer-checker 
paired functional blocks in each architectural stage requiring independent deve-
lopment with independent verification and validation.

• Each stage in the respective channels consists of a low integrity level unit and a 
high integrity level safety gate checking the safety of the unit’s output. The split into 
high integrity level monitoring and low integrity level intended functionality requires 
a technical independence between the architectural elements that includes diversi-
ty (e.g., see preconditions for ASIL decomposition in ISO 26262). The safety gates 
have different functionalities implemented compared to the units, which brings with 
it different developments. However, homogenous elements and similar design ap-
proaches must be avoided for the sake of diversity.

Complexity of validation

This architecture has a number of diverse subsystems requiring independent verification.

• The units and safety gates, as well as the Primary Selector and Vehicle Control 
perform different functions within the vehicle. Unit test verification of each indepen-
dent sub-system within the system would require an appropriate test harness to be 
developed to enable full control of inputs to and access to outputs from each sub-
system.

• Multiple custom-built integration testing harnesses would be required to verify sub-
sets of the components as they are integrated together. The different components 
would be developed in parallel and would require a staged integration testing ap-
proach. Each subsystem works as an independent fault containment unit.

• It is assumed that the doer-checker pairs (as a single element) of the primary and 
safing channel as well as the Primary Selector and Vehicle Control are developed 
in parallel to SEooCs. The final functional safety concept would then need to inte-
grate all of the different out-of-context components and validate all of the functio-
nal safety requirements for the completed system.

• The high number of subsystems due to the instantiation of the “architectural pattern” 
at the various stages results in high integration efforts, which include integration ve-
rification.

• The high number of subsystems due to the instantiation of the “architectural pattern” 
at the various stages means less complex subsystems compared to a single-layer 
approach which eases the verification efforts (review, test, analysis) for the respecti-
ve subsystems and also raises the efficiency of finding anomalies.

• Due to the independence requirements between a high number of subsystems ad-
herent to the architectural pattern applied at multiple stages, a complex and chal-
lenging dependent failure analysis must be performed.
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4.2.4.6 SAFETY OF THE INTENDED FUNCTIONALITY 

4.2.5 EVALUATION OF THE DSM ARCHITECTURE
4.2.5.1 AVAILABILITY

Support to accommodate functional insufficiencies

• This architecture supports a sufficiently diverse implementation to cover the safe 
handling of triggering conditions and functional insufficiencies.

• The multi-channel approach not only ensures fail-degraded behavior but also pro-
motes diverse implementation.

• The layered approach showing separation of concerns facilitates analysis and im-
plementation of measures to address functional insufficiencies (e.g., limitations of 
perception algorithms and outputs are handled separately from the ones related to 
planning). This implies that the checkers may be simpler. This specialization also 
has a positive impact on V&V effort, maintainability, and reusability, all of which 
are relevant for SOTIF.

• The large number of subsystems may negatively affect the response time in critical 
situations. This, in turn, can be compensated for by a faster reaction, given the sim-
pler or earlier checking. 

Support to manage operational conditions

• A fallback pipeline (Safing Units and Gates of different stages) is included in the ar-
chitecture. It uses an independent set of sensors.

• It is assumed that at least the checkers perform the ODD monitoring functionality 
and other SOTIF-related checks. No details are included in the patent regarding 
this aspect.

• The checkers of the fallback channel perform buffering of the last safe output to en-
sure fail-operational (degraded) vehicle behavior.

Availability of the system

This architecture provides a high degree of fault tolerance. There are multiple redundant 
subsystems capable of controlling the vehicle under both nominal and failure conditions.

• Each subsystem is equipped with a backup. Redundant communication channels 
are available, including a secondary set of AD and ODD sensors.

• In some cases, there are dual-redundant subsystems. The CSM acts as a backup for 
the VSM, which in turn acts as a backup for the FUN.

• There are no obvious single points of failure.
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4.2.5.2 RELIABILITY

Diagnostics scheme

The architecture includes multiple layers of diagnostic checking.

• Continuous diagnostic checking is performed on the functional sensors, safety sen-
sors, as well as between various subsystems within the architecture.

• A continuous (cross-checking) challenge and response mechanism between the 
VSM and CSM confirms that both subsystems are within their safe operational para-
meters.

Degradation scheme

DSM provides for a controlled degradation of functionality under failure conditions.

• Degradation occurs in a controlled manner, depending on the nature of faults 
detected. There are five different modes of operation, each providing diminishing 
levels of comfort to the passengers: Full AD mode, a “detour” mode when immedia-
te repair is needed, a “comfort stop” occurring at the next opportunity, an immedia-
te “safety stop” when the fault(s) require urgent reaction, and an emergency stop 
when it is no longer safe to continue operating.

• There exists full hardware and software redundancy between the primary FUN and 
the VSM. These two redundant systems are both fully capable of controlling the ve-
hicle autonomously. In addition, the CSM is capable of an emergency stop when 
necessary if both the FUN and VSM fail, acting as an additional layer in the degra-
dation scheme.

Availability of nominal functionality

DSM provides two subsystems capable of fully autonomous operation. The CSM compares 
the outputs of the FUN and VSM, enabling the detection of failures.

• CSM subsystem performs continuous comparisons between the actuator outputs of 
the FUN and VSM. This enables rapid detection of a fault in the FUN system and 
immediate failover to the VSM. Such dual-redundant fully autonomous subsystems 
should provide a high level of reliability.

• The active checking approach performed by the CSM is unclearly defined and may 
be impractical if the asked-for agreement is too strict. Differences between FUN 
and VSM actuator commands must be expected due to differences in sensor inputs 
and computational algorithms. These differences may not indicate failure but rather 
two possible successful decisions (e.g., veer right to avoid a pothole, versus veer left 
to avoid a pothole). Being too strict in checking may result in false positives, where-
as being too lenient may result in reactions which are too slow in a true failure situa-
tion. The CSM may thus need to resort to the MRM, which reduces the availability of 
the nominal functionality.

• DSM requires a complex mix of hardware and software. The resulting architectural 
footprint may result in a higher potential defect rate within subsystems or in the in-
teractions between subsystems.
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4.2.5.3 CYBERSECURITY

4.2.5.4 SCALABILITY

Interactions with external systems

It is expected that this architecture will require communication outside of the system. All 
subsystems are likely to require regular updates. As a result, the system would likely be 
connected to a network to perform these updates.

• Several subsystems (mostly the FUN and only to a lesser extent the associated SFM) 
are highly complex and likely to require frequent updates to fix defects or to install 
improved functionality, which are thus likely to use OTA. Use of OTA provides an ex-
posed attack surface for gaining remote access to the system.

• The other subsystems (CSM and VSM) are simpler and likely to require less frequent 
updates, which may thus use more secure update mechanisms.

Interactions between subsystems

This architecture requires significant amounts of data to be exchanged between subsys-
tems, including a high number of interactions between those subsystems.

• If a subsystem is compromised, the relatively large number of interfaces (e.g., due 
to additional monitoring mechanisms) can make it easier to corrupt additional sub-
systems.

Scalability towards different offering levels 

It may be possible to carry over components from an existing SAE L2 system for use in the 
DSM.

• The FUN has similar functionality and requirements as an SAE L2 ADAS. This com-
ponent could potentially be reused in a lower tier vehicle with only an L2 system, re-
sulting in some cost savings.

• Other components of the system are specific to SAE L3 or higher (SFM, CSM, and 
VSM). These components would likely be developed and manufactured only for the 
fully functional AD system.

Scalability towards higher availability

This architecture appears to be extensible to achieve higher availability, e.g., for fully dri-
verless AD use cases.

• There is the possibility to add more VMs (adding more FUN and SFM modules) for 
higher availability or for load balancing if performance is an issue.

• There is only one VSM, which could prove a bottleneck for increasing availability if 
it is prone to failure.
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4.2.5.5 SIMPLICITY

Number, complexity, and performance of subsystems

DSM includes a high number of complex and high-performance subsystems, which in-
teract in a complicated manner.

• The FUN is expected to have very high complexity and require very high perfor-
mance. The VSM is expected to have slightly lower complexity and performance 
than the FUN.

• The CSM is expected to have moderate complexity and low performance needs. 
The checking approach for CSM is unclear but may turn out to be more complex 
than expected. The SFM is expected to have low complexity and low performance.

• Two disjunct sensor sets are required. This adds to the manufacturing cost and 
complexity and would require additional wiring within the vehicle.

• Two redundant high-bandwidth communication networks are required. Similar to 
the redundant sensors, this also adds to the manufacturing complexity and wiring 
needed.

• Due to the high reliability on two disjunct sets of sensor data inputs, some fault mo-
nitoring would be necessary for each of them.

Required level of diversity

This architecture has a high number of diverse subsystems requiring independent deve-
lopment, safety verification / validation, and integration.

• The FUN and the SFM are complementary, making it easier to ensure sufficient in-
dependence.

• The FUN, SFM, CSM, and the VSM perform different functions within the vehicle. 
The VSM is capable of driving fully autonomously, however it makes use of a diffe-
rent set of input sensors than the FUN and is intended only for short-term use when 
the FUN is failing. The VSM is also expected to be a somewhat simpler control algo-
rithm than the FUN. Most likely there would be little commonality between the two. 
Therefore, all four of these components would have very different functional requi-
rements, resulting in very diverse development, verification, and validation.
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4.2.5.6 SAFETY OF THE INTENDED FUNCTIONALITY 

Complexity of validation

This architecture has a high number of diverse subsystems requiring independent verifi-
cation.

• The FUN, SFM, CSM, and the VSM perform different functions within the vehicle. 
Unit test verification of each independent subsystem within the system would requi-
re an appropriate test harness to be developed to enable full control of inputs to 
and access to outputs from each component.

• Multiple custom-built integration testing harnesses would be required to verify sub-
sets of the components as they are integrated together. The different components 
would be developed in parallel and would require a staged integration testing ap-
proach. For example, the SFM is tightly coupled to the FUN as it performs checks on 
it. They would likely be integrated, validated, and verified together initially. Next, the 
VSM would be added and verified with the FUN and SFM. And lastly, the CSM is 
tightly coupled to both the FUN and the VSM as it performs a comparison between 
them. It would be integrated, validated, and verified with the completed system.

• Assuming parallel development of all components (except perhaps the FUN and 
SFM), it is likely all would perform their certification activities separately (potentially 
as SEooC). The final functional safety concept would then need to integrate all of 
the different out-of-context components and validate all of the functional safety re-
quirements for the completed system.

• The FUN and the VSM can be treated as SEooCs, allowing for parallel develop-
ment and largely independent validation, verification, and certification. This is likely 
to significantly lower validation efforts compared to validation just on the level of 
the integrated system.

Support to manage operational conditions

• The SFM is explicitly intended to act as an ODD checker.

• Other aspects to ensure safe usage are not explicitly mentioned but could be consi-
dered in the implementation.

Support to accommodate functional insufficiencies

This architecture considers several SOTIF aspects in the responsibilities of its subsystems.

• The SFM is explicitly intended to act as an ODD checker.

• The FUN, SFM, and VSM perform different functions within the vehicle. They can be 
implemented in a diverse way on the algorithmic level.

• A diverse set of sensors can be used.

• SFM and VSM collect and evaluate diagnostics data from the two sensor sets.
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4.3 SPECIFIC EVALUATION IN THE CONTEXT OF THE 
REFERENCE AD USE CASE
4.3.1 RELEVANCE OF THE EVALUATION CRITERIA IN THE CONTEXT OF THE REFE-
RENCE AD USE CASE
Depending on the selected use case, some KPIs may be more relevant than others. For instan-
ce, scalability (defined as a measure of an architecture’s capability to be stepwise developed 
by extending SAE L2 systems) will likely not be relevant for urban SAE L5 robotaxis, which tend 
to be developed from scratch and are not intended to be sold as optional functions of standard 
OEM offerings to end customers.
Conversely, scalability may be highly relevant for a Highway Pilot function, which might be de-
veloped as a natural extension of highway-oriented L2 applications. 

In the following, we attempt to give an assessment of the selected KPIs in the context of the 
reference use case of a Level 4 Highway Pilot. We employ the following ratings for the KPIs: 

• Must-have

• Important

• Beneficial

• Unimportant

Readers of this document are encouraged to apply their own rating, in their specific use cases, 
innovation space and constraints from commercial, technical, or legacy requirements. 

AVAILABILITY
In the context of an L4 Highway Pilot, availability of the system until successful completion of 
an MRM will become a formal safety goal with an ISO 26262 ASIL D target to be met (pending 
a formal HARA being conducted), as a system failure in a dense highway traffic situation will 
usually not be controllable by the driver and the consequences of a crash might be fatal. The-
refore, availability is rated as a must-have for the reference use case.

RELIABILITY
In the reference use case of an SAE L4 Highway Pilot, reliability (defined as the continuous 
availability of the full, nominal functionality) is highly desirable from a vehicle user’s perspecti-
ve and shall be maximized. A switch to degraded functionality, e.g., executing an MRM, will 
be at least an annoyance or more likely disturbing for the passengers; frequent ones will lead 
to severe customer complaints, but will at least not lead to harm. Therefore, reliability is rated 
as important for the reference use case.

CYBERSECURITY
Vulnerability to cybersecurity threats impacts system safety, as an intruder might deactivate an 
essential safety mechanism or even maliciously manipulate essential autonomous driving func-
tions like sensor inputs or trajectory planning. Still, an ADI by itself will not be able to fully avert 
cybersecurity risks, as many system functions (e.g., the sensors and actuators) are outside its 
scope and additional mechanisms like gateways and firewalls are needed. Therefore, alt-
hough resilience to cybersecurity attacks is a must-have for the vehicle and the AD system as a 
whole, it is “just” considered important for the ADI system in the context of the reference use 
case.
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SCALABILITY
Since the chosen reference use case of an L4 Highway Pilot may be developed as a natural 
extension of highway-oriented legacy L2 functions, parts of those functions (legacy sensors, 
ECUs, application components) might need to be incorporated into the realization of the L4 
system. Conversely, SAE L2 functions might be implemented by a subset of components of the 
L4 system, which has been developed from scratch. In both cases, the L4 functionality might be 
marketed as optional equipment, and potentially a significant share of the overall vehicle vo-
lume might support L2 functions only. To implement such a concept in a commercially viable 
way, scalability is considered important for the reference use case.

SIMPLICITY
Although simpler than L5 functions or urban use cases, the algorithmic and system complexity 
for an L4 Highway Pilot remains high and verification and validation efforts might be prohibiti-
ve if not supported by a suitable system architecture. The established concept of “divide and 
conquer”, i.e., a conceptually clean, modular architecture with a well-arranged number of 
components of clear purpose, simple interfaces, and clear delimitations to each other, will be 
at least important if not a must-have for the reference use case.

SAFETY OF THE INTENDED FUNCTIONALITY
SOTIF is probably the key property and requirement that lay persons and the general public 
associate with autonomous driving functions, and technical as well as authority reports about 
incidents with autonomous cars mostly focus on function aspects and deficiencies (like object 
detection capabilities). In the context of the reference use case, SOTIF is considered a must-
have.    
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4.3.2 ASSESSMENT OF THE CANDIDATE ARCHITECTURES UNDER THE EVALUATION 
CRITERIA
4.3.2.1 AVAILABILITY ASSESSMENT

CONCLUSION: 
For the reference AD use case of an L4 Highway Pilot, the channel-wise DCF and the layer-wise 
DCF seem to be the architectures of choice from an availability point of view. DSM is considered 
problematic due to its common-cause failure sensitivity, and majority voting is considered high-
ly problematic (if not unsuitable) in the practical case of non-deterministic channels. Single-
channel is considered to be unsuitable.

Variant Assessment 

Single-channel 

This architecture is obviously very sensitive to single points of failure. To 
make it somewhat resilient to such failures, several “internal” redun-
dancy measures will likely need to be installed in a detailed architec-
ture phase or even in an implementation phase, potentially in an ad-
hoc way (making it hard to verify their sufficiency and completeness). 

Majority voting

The M-oo-N voting architecture with homogeneous channels addres-
ses random HW faults well, but is susceptible to common-cause failu-
res, as the complex AD algorithms will not usually be suitable for full 
ASIL D development. Conversely, heterogeneous channels are not sui-
table for voting, as channels might each exhibit different (but valid) 
driving policies, and therefore a faulty channel might not be identifia-
ble. This is especially true for the practical case of 1-oo-3 (TMR), where 
the problem is likely not solvable. 

Channel-wise 
DCF

The channel-wise DCF architecture scores highly under the availability 
criterion, as it exhibits no obvious single point of failure (provided that 
the FTDSS subsystem is implemented in a fault-tolerant way) and due 
to the asymmetric approach, with its diversity of the channels, also has 
a high potential to rule out common cause faults. 

Layer-wise 
DCF

The layer-wise DCF architecture scores highly on the availability criteri-
on, due to its primary and secondary channels plus the MSTOP (blind 
stop) capability. However, the published description suggests potential 
single points of failure that would need to be avoided, e.g., using the 
same occupancy grid in the primary and secondary channels (where-
as using that same input for the planners and safety gates of each 
channel can be beneficial to avoid false positives - if used correctly to 
restrict the planner’s decision space, not to extend it). Also, the symme-
tric architecture suggests sensitivity to common cause faults in the un-
derlying implementation, which would need to be avoided. 

DSM

The Distributed Safety Mechanisms architecture is intended to support 
the availability KPI, due to its multiple layers and redundancy mecha-
nisms. It has some similarity to the channel-wise DCF architecture but 
offers additional degradation steps, giving in principle the potential for 
higher availability; in the concrete implementation proposed, it does 
not have a clear separation of the functional (FUN) and monitoring 
(SFM) channels, but implements both within the same SOC and virtual 
machine, and seems therefore highly sensitive to common cause faults. 
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4.3.2.2 RELIABILITY ASSESSMENT

CONCLUSION: 
For the reference AD use case of an L4 Highway Pilot, majority voting and DSM seem to be the 
most capable architectures to sustain nominal functionality. Channel-wise DCF and layer-wise 
DCF can approximate this to some extent but will fall into degraded mode more often (due to 
their focus on safety). Single-channel does not support reliability at the architectural level, it is 
strictly implementation dependent. 

Variant Assessment 

Single-channel 

The resilience to functional deficiencies is not supported by any archi-
tectural measure but depends strictly on the internal implementation of 
its subcomponents. As such, degradation measures will likely need to 
be installed in a detailed architecture phase or even in an implemen-
tation phase, potentially in an ad-hoc way (making it hard to verify 
their sufficiency and completeness). 

Majority voting

The M-oo-N voting architecture will provide high reliability, as each of 
its channels is conceptually capable of providing the full nominal func-
tionality and may even provide degraded modes. In fact, a compara-
ble level of capability for each channel is a precondition for successful 
voting. A practical implementation as 1-oo-3 (TMR) will still exhibit high 
reliability. 

Channel-wise 
DCF

The channel-wise DCF architecture can potentially score highly under 
the reliability KPI but depends on the concrete capability level of its 
CCDSS and MSS subsystems, and on the parameterization of the MSS 
(which initiates the potentially degraded mode of the CEHSS), to not 
produce false positives. For the CCDSS, being aware of the limits that 
will be enforced by the MSS would be a helpful addition to the archi-
tecture.

Layer-wise 
DCF

The layer-wise DCF architecture, like the channel-wise DCF, can po-
tentially score highly under the reliability criterion, but depends on the 
concrete capability level of its primary channel and the monitoring 
subsystems contained therein. To not produce false positives, it may fo-
resee precautions like restricting the primary’s decision space by the li-
mits imposed by the monitor (although this is not detailed in the publis-
hed description). 

DSM The Distributed Safety Mechanisms architecture will provide high relia-
bility, due to its multiple and differentiated degradation steps.  
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4.3.2.3 CYBERSECURITY ASSESSMENT

CONCLUSION: 
For the reference AD use case of an L4 Highway Pilot, channel-wise DCF has the highest resili-
ence against cybersecurity attacks, followed by layer-wise DCF with its higher exposure due to 
the larger number of safety gates. DSM seems to be more vulnerable due to its high number of 
interactions and tightly coupled components. Majority voting will be vulnerable in the case of 
homogeneous channels. Architecture-wise, single-channel does not provide any protection 
from cybersecurity threats. 

Variant Assessment 

Single-channel 
This architecture is critical from a cybersecurity point of view, as its sin-
gle channel does not provide any architectural partitioning but expo-
ses its complete functionality to a malicious intruder. 

Majority voting

The M-oo-N voting architecture has beneficial properties from a cyber-
security perspective, as its channels are highly separated and ex-
change little (if any) information, and the voting component itself is ex-
pected to be simple and well-separated. However, if its channels are 
implemented homogeneously, this will be highly susceptible to expo-
sing a common vulnerability. 

Channel-wise 
DCF

The channel-wise DCF architecture scores highly under the cybersecu-
rity KPI, as its clearly separated components exchange only a small 
amount of well-defined information and are highly diverse, potentially 
avoiding common vulnerabilities. 

Layer-wise 
DCF

The layer-wise DCF architecture scores highly under the cybersecurity 
KPI, due to its clearly separated components. However, a successful 
attack to one single (of several) safety gates would compromise the 
overall system.

DSM

The Distributed Safety Mechanisms architecture seems to be more vul-
nerable from a cybersecurity point of view, as its high number of in-
teractions between subsystems and (partly) missing separation might 
make it more exposed to attackers.  
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4.3.2.4 SCALABILITY ASSESSMENT

CONCLUSION: 
For the reference AD use case of an L4 Highway Pilot, the majority voting architecture seems to 
be the best option to both downscale to L2 and upscale to L5. Channel-wise and layer-wise 
DCF seem to provide good capabilities to downscale to an L2 system or leverage L2 system 
developments, whereas DSM seem to be a better fit for upscaling to an L5 system. Single-chan-
nel does not support scaling at all. 

Variant Assessment 

Single-channel This architecture does not provide any scaling options. 

Majority voting

The M-oo-N voting architecture appears to be highly scalable, as one 
of its channels can be used to downscale to an L2 system or could be 
derived by extending an existing L2 system. Likewise, it could be ups-
caled by adding channels.

Channel-wise 
DCF

The main component of the channel-wise DCF architecture (CCDSS) 
can be used to downscale to an L2 system or could be derived by ex-
tending an existing L2 system. 

Layer-wise 
DCF

The primary components of the layer-wise DCF architecture can be 
used to downscale to an L2 system or could be derived by extending 
an existing L2 system.

DSM

Some of the components of the Distributed Safety Mechanisms may be 
derived by extending an existing L2 system. It is not obvious, however, 
how it could be downscaled to an L2 system by essentially just remo-
ving L4-related components. It could be upscaled to L5 by adding 
FUN/SFM components, but its VSM would need to be substantially ex-
tended.
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4.3.2.5 SIMPLICITY ASSESSMENT

CONCLUSION: 
For the reference AD use case of an L4 Highway Pilot, channel-wise DCF and layer-wise DCF 
seem to be preferable with respect to simplicity, i.e., reasonable integration and validation ef-
forts. DSM is highly complex, especially for the system integrator. Majority voting seems simple, 
but the individual channels’ complexity is high, as is their integration in the case of heteroge-
neous channels. Single-channel is superficially the simplest but is expected to require high ve-
rification and validation efforts. 

Variant Assessment 

Single-channel 
This architecture superficially seems to be simple, but its monolithic ap-
proach and lack of clearly separated subsystems will lead to high 
complexity and effort for implementation, verification, and validation.

Majority voting

The M-oo-N voting architecture appears to score highly under the sim-
plicity criterion, due to its regular structure. However, each individual 
channel might have similar properties to the single-channel architec-
ture, with comparable consequences for implementation and verificati-
on efforts. Relaxation on the individual channels due to the subsequent 
voting might be offset by efforts to identify faulty channels correctly. This 
might be a challenge for the system integrator, and for TMR (1-oo-3) as 
a practical option, it is questionable whether this can be solved at all.

Channel-wise 
DCF

The channel-wise DCF architecture is conceptually simple, as its clear-
ly separated components with distinguished purposes and well-defi-
ned message exchange enable modular, separate development and 
simpler overall safety assessment. CCDSS will be the most complex 
component, but less effort than one of the majority voting’s channels, 
due to the highly diverse MSS supervision. Efforts for the system integra-
tor seem to be reasonable.

Layer-wise 
DCF

The layer-wise DCF architecture has clearly separated components 
with distinguished purposes and well-defined message exchange, but 
the higher number of components and level of information exchange 
(compared to the channel-wise DCF) will increase the burden on the 
system integrator and complicate overall safety assessment. On the 
other hand, the layered approach might enable a more modular, se-
parate development. 

DSM

The FUN, SFM, CSM, and the VSM modules of the Distributed Safety 
Mechanisms are separated, enabling separate development and veri-
fication, but interact in complex and highly diverse ways, thus putting a 
high burden on the system integrator and complicating the overall 
safety assessment. The proposed architecture also mixes functional 
aspects (FUN, SFM, VSM) with system integrity aspects (CSM) and im-
plementation aspects (middleware, virtual machine) – it will thus be 
critical to decompose and assign the required system properties to the 
entities of the architecture in a clear, consistent, and complete way.
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4.3.2.6 SOTIF ASSESSMENT

CONCLUSION: 
For the reference AD use case of an L4 Highway Pilot, the channel-wise DCF, the layer-wise 
DCF and the DSM are the architectures of choice from a SOTIF point of view. Majority voting is 
highly problematic (if not unsuitable) in the case of heterogeneous channels, as correct voting 
cannot be ensured. Majority voting with homogeneous channels and the single-channel archi-
tecture are highly sensitive to functional deficiencies and off-nominal conditions, and therefore 
likely unsuitable.

Variant Assessment 

Single-channel 

Due to its monolithic nature, this architecture is obviously very sensitive to 
functional deficiencies and to deviations from the nominal conditions, 
especially since it will need to rely on machine learning to achieve the per-
formance goals and there is no visible means of supervision or diversity.

Majority voting

The M-oo-N voting architecture with homogeneous channels is 
susceptible to common-cause failures by functional deficiencies or de-
viations from the nominal conditions. Conversely, heterogeneous chan-
nels are not suitable for voting, as channels might each exhibit diffe-
rent (but valid) driving policies, and therefore a faulty channel might 
not be identifiable. This is especially true for the practical case of 1-oo-
3 (TMR), where the problem is likely not solvable. 

Channel-wise 
DCF

The channel-wise DCF architecture scores highly under the SOTIF crite-
rion, as it exhibits a natural diversity between the CCDSS and the MSS, 
and the CEHSS (being explicitly foreseen for out-of-ODD operation) is 
likely implemented very differently than the CCDSS. This architecture 
also quite naturally manages changes to the nominal conditions.  

Layer-wise 
DCF

The layer-wise DCF architecture scores highly under the SOTIF criteri-
on, as it employs multiple checkers and safety gates both on its primary 
and secondary channels, promoting modularity and diversity which 
also has a positive impact on development and V&V. It may be capa-
ble of addressing deviations from the nominal conditions well, but this 
seems not to be explicitly foreseen. 

DSM
The Distributed Safety Mechanisms architecture highly promotes SOTIF, 
due to the different functions performed by its FUN, SFM and VSM mo-
dules. Management of off-nominal conditions is also explicitly foreseen.  
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4.3.3 EVALUATION SUMMARY
The following table gives a summarizing overview of the evaluation findings, if and how the 
criteria are supported by the respective architectures: 

In general, we find that asymmetric architectures (Channel-wise DCF, Layer-wise DCF and 
DSM) are better suited than symmetric ones (Single-Channel, Majority Voting) for the comple-
xity in Automated Driving.

Their quite naturally independently developed and complementary channels can compensate 
for each other’s weaknesses, compared to the essentially identical or potentially even monoli-
thic implementations of symmetric architectures. 

The asymmetric architectures basically employ two design patterns and combine them in dif-
ferent ways:

• Doer / Checker: One subsystem performs the function, the other one monitors it.

• Active / Hot Stand-By: One subsystem is active, and the other is on stand-by; if the active is 
unavailable or unsafe, the stand-by takes over.

Single-
Channel

Majority 
Voting

Channel-
wise DCF

Layer-wise 
DCF DSM

Availability Not 
supported

Homogeneous: 
yes, but common 
cause risk Hete-
rogeneous: no

Concept fo-
cuses on 
availability

Concept fo-
cuses on 
availability, 
risk of single 
point failures

Sensitivity to 
common cau-
se failures

Reliability Not 
supported

Homogeneous: 
low Heteroge-
neous: high

Reasonable 
reliability, im-
plementation 
dependent

Reasonable 
reliability, 
with precauti-
ons by archi-
tecture

Multiple diffe-
rentiated de-
gradation 
steps

Cyber-
security

Not 
supported

Homogeneous: 
low Heteroge-
neous : high

Diverse struc-
ture with high 
resilience

Diverse struc-
ture, but mul-
tiple single-
attack points

Diverse struc-
ture, but 
complexity 
might expose 
vulnerabilities

Scalability Not 
supported

Omit / add chan-
nels to scale

Omit chan-
nels to 
downscale to 
L2

Omit chan-
nels to 
downscale to 
L2

Downscaling 
to L2 not 
straightfor-
ward, but po-
tential to ups-
cale to L5 

Simplicity High inner 
complexity

Simple architec-
ture, complex 
channels

Simple, clear 
concept

Structured, 
medium 
complexity

High comple-
xity for the in-
tegrator

SOTIF 
Support

Not 
supported

Not supported 
due to homoge-
neous architec-
ture

Structure sup-
ports SOTIF

Structure sup-
ports SOTIF

Structure sup-
ports SOTIF
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A combination of these patterns allows for a sound partitioning into modules with simple and 
purposeful interfaces that can be independently verified and whose integration is straightfor-
ward and readily verifiable.  Also, these patterns lead to a limited, well-arranged and predic-
table number of system states under both nominal and off-nominal conditions. A solid and ve-
rifiable safety argumentation can then be constructed systematically based on the individually 
developed modules and their successful integration.

5 IMPLEMENTATION 
CONSIDERATIONS
5.1 HW MAPPING CONSIDERATIONS
In this section, a short introduction to some aspects of HW refinement of the conceptual system 
architecture is given. This is not a complete list of aspects.

5.1.1 HIGH AVAILABILITY AND VEHICLE OPERATING STATES
Architectures in the Automated Driving (AD) context in general should not limit their functiona-
lity to a dedicated vehicle operating state (like parking, standing still, driving slowly etc.), but 
should work in fault-free condition in all vehicle states. But the loss of the functionality can lead 
to a hazardous event only in specific vehicle operating states. One valid approach for degra-
dation of Automated Driving functionality is to change the operating state to lower severity or 
exposure, for instance by lowering the vehicle speed in a controlled way. In this context, please 
check ISO 26262:2018-10 §12.

Emergency operation exposure time as reaction to a fault should be limited if the ASIL capabi-
lity of the item is lower than the ASIL rating of the possible hazard. If after the occurrence of the 
fault, the vehicle operating states are not changed, then the ASIL is the same as that derived 
from the HARA and no ASIL decomposition of main path and a potential redundant path is 
allowed.

For redundant paths, a dependent failure analysis should be executed to find and eliminate 
common cause initiators.

5.1.2 COMMON CAUSE INITIATORS
ISO 26262:2018-9 §7 requires assessment of Common Cause Initiators (CCI):

a. Random HW faults
Many of the system architectures use redundant channels to mitigate random HW faults in 
one channel by providing the same function in the redundant channel. There is a very 
small chance that in the Safety Goal-relevant time interval a random HW fault is detected 
in the redundant channel as well. A good strategy to treat this case is to use diverse con-
figuration of fault reaction in the first and redundant channel. 

b. Development faults
Those are covered by ASIL D development process, requirement-driven development flow 
and tool chain qualification process. A Development Process Documentation (DPD) can 
provide information related to the following topics:

i. Development Process 

ii. Development Environment 
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iii. Requirement Management

c. Manufacturing faults
The manufacturer should monitor the compliance with the related standards, e.g., by Au-
dits, Production Assessment and Process FMEA activities. Particular focus should be put on 
the verification by testing of characteristics determined by analogue circuitries, including 
in quasi-digital parts such as memory. ISO/TS16949 certificates should be provided by all 
manufacturing sites documenting process compliance. An ISO 9001 certificate covers all 
sites, locations and organizational units of a manufacturer. TS16949 certificates cover all 
production sites, headquarters, automotive design centers, and sales. AS 9100 certificates 
cover production sites in America.
The Production Part Approval Process (Produktionsteil-Abnahmeverfahren, PPAP) [AIAG] 
is comparable to the PPA Production Process and Product Approval (PFF Produktionspro-
zess- und Produkt- Freigabe) [VDA]. Both procedures are reflected in the ZVEI PPAP 
Guideline. The Automotive Industry Action Group (AIAG) has developed a common PPAP 
standard as part of the Advanced Product Quality Planning (APQP) to use a common ter-
minology and standard forms to document project status. Companies may have their own 
individual requirements. PPAP is the documentation (snapshot) of the current state of the 
product design, functionality, and reliability as well as the production processes used.

d. Installation faults + e) Repair faults
This CCI category shall be mainly addressed by OEM and TIER1 suppliers. The guidance 
given by suppliers in their user manuals and safety application guidelines shall be 
obeyed.

e. +h) Environmental factor incl. stress
The prototypes and series components of ADS should be subject to Environmental Stress 
as defined by semiconductor standards and by the automotive industry, such as AEC-
Q100. OEM and their TIER1 suppliers shall analyze the potential impact on their diversity 
claim. 

f. Common external resources
The functional safety of external resources, such as power supply, debug support and 
communication interfaces shall be analyzed for potential common causes to redundant 
channels.

5.1.3 CLOCK, POWER, RESET, DEBUG AND TEST FAILURES
Infrastructure functions in Automated Driving systems are typically common cause initiators on 
the hardware level.

The clock configuration of an automated driving system is defined during the development 
phase and is usually static during runtime. Therefore, any systematic failure affecting its functi-
onality or monitoring capability is assumed to be found during integration verification. A diver-
se crystal oscillator type or PCB layout for redundant and diverse paths can reduce dependent 
failures. Diverse configuration settings of clock upscaling and distribution can reduce depen-
dent failure.

Systematic faults in power supply circuits can affect the voltage regulator characteristic. Extre-
me corner cases (which could escape system validation) are unlikely to happen identically in 
redundant and diverse paths for an Automated Driving system.

During the operation of an Automated Driving system, a reset of hardware components can be 

A Quality Process Documentation (QPD) can provide references to cover various quality 
management and production-related topics. Both contribute to a Quality Process 
Management with the goal of providing the best avoidance of systematic development 
faults.
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used as a reaction to detected faults, but also has a high impact on the availability of the sys-
tem. Reset as failure reaction should be used only for failures which cannot be handled other-
wise. A diverse configuration of all reset sources (especially fault reaction) can reduce depen-
dent failures. Under certain conditions, the redundant path can be configured to ignore all 
reset sources (in the case of a fault detected in the main path).

Debug is meant to be used during SW development only, therefore its systematic failures do not 
affect the functionality of the Automated Driving system during runtime. During safety applica-
tion, all debug functionality should be disabled. The only remaining systematic faults could re-
sult from SW activation with critical failure mode “unintended debug”. Diverse SW implementa-
tion can reduce dependent failure (e.g., redundant path without any debug SW parts 
compiled).

Test functionalities based on Built-In Self-Test (BIST) are executed during startup only, therefore 
its systematic failures do not affect the functionality of the Automated Driving system during 
runtime. During safety application, all test functionality should be removed. Only remaining sys-
tematic faults could result from SW activation with critical failure mode “unintended test”. Diver-
se SW implementation can reduce dependent failure (e.g., redundant path without any test SW 
parts compiled).

5.2 SW MAPPING CONSIDERATIONS

This section contains some selected topics to consider when analyzing the system architecture 
towards further refinement of the technical aspects at the software level. 

5.2.1 SOFTWARE ARCHITECTURAL STYLES
The main aspect to consider is the software architectural design itself. An exhaustive descripti-
on of software architecture styles (e.g., layered, monolithic, microkernel, pipes and filters, cli-
ent-server, publisher-subscriber, event-driven) and their applications is beyond the scope of 
this report, but we can recommend using [45] to get a good overview. Furthermore, this report 
does not address how safety measures are appropriately integrated into such software archi-
tectures. 

Regardless of the choice of architectural styles for individual software elements, there are com-
mon safety measures, which are listed in the following non-exhaustive list:

• Graceful degradation behavior by ensuring that there is no single point of failure, especi-
ally for middleware and service-oriented software components.

• Error detection and handling mechanisms, as described in ISO 26262 [2] Parts 6 and 10, 
as well as the capability to store diagnostic data.

• Use of adequate programming languages and techniques, including the application of 
design and coding guidelines, such as MISRA C, AUTOSAR C++, CERT. 

• Performing architecture analysis, such as Failure Modes and Effects Analysis (FMEA) and 
Architecture Trade-off Analysis Method (ATAM) [45].

• Evaluation and optimization of metrics related to the quality aspects of the architecture 
(e.g., complexity, dependencies, stability of code and interfaces).

An important aspect to mention here is the shift from federated to centralized architectures in 
automotive systems. In such centralized architectures, the software is executed redundantly 
using the mechanisms of virtualization and containerization (i.e., with hypervisors coordinating 
resources and virtual machines processes). Consequently, the system is more flexible and hard-
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ware costs can be reduced. On the other hand, distributing processes to virtual machines 
brings some challenges in terms of integration and testing, as well as cybersecurity.

5.2.2 PROPERTY OF TECHNICAL INDEPENDENCE
As stated in ISO 26262 [2] Part 9, to achieve technical independence between components of 
the system, cascading and common cause failures that compromise a safety requirement shall 
be avoided. While the factors listed in 5.1.2 apply to hardware, similar classes of coupling fac-
tors shall be considered for software elements:

• Shared resources, e.g., use of identical software modules without further independence 
measures, use of mathematical or other software libraries.

• Shared information input, e.g., global variables, data or messages used by more than 
one software element.

• Systematic coupling, e.g., same software tools, same programming or modeling langua-
ge, reuse of assumptions and requirements for different software implementations.

• Components of identical type, e.g., same source code generated twice.

• Communication, e.g., global variables, messaging, function calls with arguments passed.

• Unintended interface, e.g., same memory space.

5.2.3 SOFTWARE REUSE 
Reusable software (e.g., third party software, libraries, FOSS) can significantly reduce the de-
velopment effort for AD systems. Variant management, software configuration and the integra-
tion into different architectures are aspects that need to be done carefully to avoid dependa-
bility issues.

In addition to the requirements and recommendations for the development of SW-SEooCs and 
the qualification of software components contained in ISO 26262 [2] Parts 8 and 10, there are 
new standardization efforts that complement these and provide further guidance:

• ISO/AWI PAS 8926 Road vehicles – Functional safety – Qualification of pre-existing soft-
ware products for safety-related applications (under development). 

• Public initiatives such as the project Enabling Linux in Safety Applications (ELISA, see htt-
ps://elisa.tech/).

5.2.4 SOFTWARE UPDATES
With the move to software-defined vehicles, architectures of AD systems must ensure regular, 
continuous updates of software elements in a safe manner for the long term, including over-
the-air (OTA) ones. This capability is closely related to quality aspects such as modularity, mo-
difiability, portability, extensibility, and verifiability, along with the challenge of additional 
safety and cybersecurity risks (e.g., risks associated with the use of cloud services).

To standardize the software update engineering process, ISO 24089 [46] has been recently 
published. It contains requirements and recommendations on planning, risk management, 
V&V, deployment, and monitoring of software updates, but does not include specific technolo-
gies or solutions.

5.2.5 REAL-TIME OPERATING SYSTEMS (RTOS) AND MIDDLEWARE
The software responsible for providing basic services and interfacing the software applications 
with the hardware (i.e., the electronic buses, CPUs, and ECUs) requires a high level of integrity. 
The well-known standard AUTOSAR (AUTomotive Open System Architecture, see www.auto-
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sar.org) has been largely used in its original version (i.e., Classic Platform) as the basis for tra-
ditional automotive functionalities such as engine control and transmission. For AD systems, ho-
wever, more complex software applications and high-performance computations are to be 
supported. Thus, a middleware based on the new AUTOSAR Adaptive Platform includes ad-
vanced functionalities, such as:

• Runtime configuration

• OTA software updates

• Ethernet inter-ECU communication for the transmission of large data

• High-performance hardware

• Service-oriented communication

• Compatibility with other operating systems (e.g., Linux, Android)

Other capabilities that go beyond the AUTOSAR Adaptive standard might be required, for ex-
ample scheduling and real-time guarantees for event chains across complex, multi-partition or 
multi-SOC architectures.

5.2.6 MACHINE LEARNING AND DATA-DRIVEN APPROACHES
The use of machine learning (ML) in the automotive industry was essentially introduced to ad-
dress the challenges of the perception tasks (e.g., object recognition, pedestrian detection, 
signs recognition, road intersection detection). While the neural network model used might 
play a relevant role to ensure safe outputs, the performance of ML-based software depends 
mostly on data engineering aspects. Typical issues to avoid during development of such soft-
ware are:

• Bias in data collection

• Patterns of mislabeling in training data

• Poor design of experiments for simulation validation

Another important aspect is the potentially non-deterministic behavior of ML-based software 
due to the inclusion of stochastic aspects in the training process or the concrete implementati-
on. Architectures that integrate ML-based software require safety mechanisms such as redun-
dancy and plausibility checks (e.g., safety wrappers) which makes them more complex. In ge-
neral, analyzing reliability- and safety-related failure modes and mitigating them with 
appropriate error detection and handling mechanisms is one of the key challenges for ML-ba-
sed software.

5.2.7 DATA MANAGEMENT
In addition to the safety implications of data-driven approaches in the context of ML, other 
aspects related to data management also require decision-making at the architecture and im-
plementation level. Some safety aspects related to data management are:

• Data and software configuration management (e.g., to support variant management and 
software updates).

• Assuring safety of internal-to-vehicle data management (e.g., internal maps used for ve-
hicle localization are uncorrupted and of a compatible version).

• Integrity of collecting, storing, and transmitting engineering field feedback data, including 
safety performance indicators.
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5.2.8 TOOL QUALIFICATION
Tool evaluation and qualification processes are described in ISO 26262 [2] Parts 8 and 10. Due 
to the increasing complexity of the software development environment and the technologies 
used, the topic has become crucial. Continuous Integration (CI), static and dynamic code ana-
lysis, testing and simulation tools, model-based code generation, documentation generation: 
essentially all software engineering processes are becoming automated. While this is necessa-
ry to manage development and maintenance efforts, challenges arise from increasing reliance 
on the tool chain and infrastructure, with all the associated risks related to troubleshooting, 
cybersecurity, privacy, and safety.

To the degree that simulation is used to supplant vehicle testing, tool qualification of simulati-
ons, simulation models, and simulation orchestrators will become more critical. The same ap-
plies to the tools needed to mitigate the risk of data bias, inaccurate data labels, and data 
corruption in such simulation-based validations.

From a system architecture point of view, the use of different tools for redundant subsystems 
may be necessary to rule out common points of failure due to tool malfunctions. 

5.3 SAFETY ARGUMENTATION

5.3.1 APPLICABLE SAFETY STANDARDS
With respect to safety, the relevant ISO standards are ISO 26262 (Functional Safety) and ISO 
21448 (Safety of the Intended Functionality), which should be followed throughout the develop-
ment of an AD system. Although compliance with those standards is not a formal (legal) requi-
rement for vehicle homologation, they are considered “state of the art” (also in a legal sense) 
and therefore most OEMs adhere to them in their development processes and prescribe them 
to their suppliers. 

5.3.2 ISO 26262 (FUNCTIONAL SAFETY) CONSIDERATIONS FOR THE ADI IMPLEMENTATION
ASIL ASSIGNMENT
It is safe to assume that an AD system for an L4 Highway Pilot will get the ASIL D level assigned, 
as all three relevant factors will contribute and lead to this highest classification in terms of ISO 
26262:

• Severity will be S3 (highest), as a malfunction of the AD system during autonomous opera-
tion can lead to a fatal crash.

• Exposure will be E4 (highest), as the vehicle will be in a potentially hazardous situation du-
ring autonomous operation with high probability.

• Controllability will be C3 (highest), as a malfunction while in autonomous operation will 
not be controllable by the passengers (would require an immediate attention shift and 
takeover by the “driver”)²³.

For a concrete system, of course, a Hazard Analysis and Risk Assessment (HARA) needs to be 
conducted to derive safety goals and associated ASILs, but without doubt will lead to the clas-
sifications above for many of a Highway Pilot’s functions.

²³ Note that ISO 26262 refers to “the driver or other persons involved in the operational situation” for classifying the Controllability. Strictly speaking, 
there is no “driver” for an L4 function, but we apply the definition analogously, because for a Highway Pilot we still assume a person present in the 
driver’s seat, who needs to control the vehicle anyway until highway entry and after highway exit.
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ASIL DECOMPOSITION 
Note that the ASIL D assignment is valid for the AD system as a whole (formally: for its safety 
goals) and may be lowered for some of its constituents by appropriate ASIL decomposition. This 
involves partitioning the system into sub-components with lower ASIL that jointly realize the 
safety goal and must be integrated using ASIL D-compliant technical measures and processes.
In the context of an L4 Highway Pilot, decomposition is also a practical necessity, as many 
components required to implement it are too complex to completely fulfill ASIL D criteria – like 
high-end SOCs, operating systems, or application software components.²⁴

AVAILABILITY AS A SAFETY GOAL
ISO 26262 was originally for traditional powertrain, steering, braking or even ADAS (L1 or L2) 
functions, and those systems are usually developed with a correctness goal defined and a fail-
silent system reaction, i.e., switch-off in the case of a malfunction.
For an L4 Highway Pilot with its fail-operational/fail-degraded requirement, however, the 
availability of the AD system becomes a safety goal with ASIL D too and needs to be met by 
applying appropriate technical and process measures – as any sudden non-availability of the 
AD system during L4 operation will not be controllable by the passengers and will likely cause 
harm (up to fatalities). 

REDUNDANCY
On the architecture level, the availability goal is usually addressed by appropriate redundancy 
measures, which are installed to cope with the unavoidable failure of individual components 
of the system (for example, due to permanent or transient electronic faults, or due to residual 
SW errors). All architectures evaluated in this report exhibit such redundancy, except for the 
Single-Channel architecture. 

SUFFICIENT INDEPENDENCE
Redundancy is not sufficient to ensure availability: sufficient independence of the redundant 
components must also be ensured, to avoid common cause or cascading failures which would 
cause redundant components to fail jointly and render the whole AD system unavailable. The 
same argumentation applies to ASIL decomposition: it is only allowed if the constituent com-
ponents are independent of each other and cannot jointly violate the functional safety goals. 
In the case of an L4 Highway Pilot, this means that decomposed / redundant system channels 
must be implemented in a sufficiently diverse fashion to rule out common cause failures that 
might impede either the functional correctness (e.g., in a doer-checker configuration) or the 
system availability (e.g., in a main-fallback configuration).

IS ASIL D ENOUGH?
ISO 26262 does not give any reference or consideration to the system’s complexity – effectively 
an ASIL D SW component implemented with 5 kLOCs is considered to be equally safe as a 
system that contains 100 kLOCs. However, according to [10], a system with more than 10 kLOCs 
is likely to exhibit residual systematic SW errors, even when developed to the highest safety 
standards. 
An L4 Highway Pilot can be considered a highly complex system and will for sure involve much 
more than 10 kLOCs for its implementation. Therefore, even the application of the ASIL D pro-
cess to a complex system channel might not ensure system safety – instead, partitioning such a 
channel into smaller constituents with lower complexity, which are developed to ASIL D and 
can be readily (individually) verified, should be considered.

²⁴ Machine learning algorithms are often cited as intractable for development according to ISO 26262. Actually, their regular structure for the 
inference phase makes them quite easily compliant. 
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COMPLEX INTERACTIONS
All the investigated ADI architectures except the single-channel architecture exhibit some func-
tionally and/or availability motivated partitioning that reflects the need for redundancy and 
decomposition. Some are already initially quite complex (DSM, layer-wise DCF), but even the 
simpler ones (channel-wise DCF, majority voting) are likely to require further partitioning within 
their channels, to arrive at technically tractable implementations. Such partitioning will also 
support the ASIL D argument, as reflected above.
In any case, one might end up with a significant number of components with a (combined) 
potentially enormous number of system states and complex internal interaction. To prove that 
the integrated system possesses the expected safety and availability properties, and does not 
exhibit any unintended emergent behavior, formal modelling and verification can be employ-
ed. Such a process can give mathematical correctness assurances, where human cognitive 
limits are exceeded, and manual verification would be too error-prone.

5.3.3 ISO 21448 (SOTIF) CONSIDERATIONS FOR THE ADI IMPLEMENTATION
The standard SOTIF-ensuring process according to ISO 21448 shall be followed when implemen-
ting the ADI, both on a system level and when implementing the channels and components of 
the architectures presented here.

Architecture considerations or dedicated architecture design and evaluation steps are not re-
flected in that standard; mentioned system modification steps to ensure SOTIF mostly focus on 
functional aspects and not architectural measures. Still, the chosen architecture will have a 
decisive impact on the efforts required to develop and validate an AD system.

However, certain architecture aspects are mentioned in ISO 21448, and closer examination 
shows that the architectures presented here quite naturally support the standard, and actually 
help to reduce the effort required for ensuring SOTIF.

SENSE-PLAN-ACT
The established Sense-Plan-Act paradigm is used in ISO to motivate a modular specification, 
design, and V&V approach, with individual qualitative and quantitative development goals for 
each layer. In the architectures described in this report, the analogous layering is explicitly fo-
reseen only in the layer-wise DCF architecture. However, the other architectures can (and will 
need to) be broken down into a similar structure for their high-level building blocks, like the 
channels of the majority voting and channel-wise DCF architectures, the FUN layer of the DSM 
architecture, and in particular the single-channel architecture. 

DDT FALLBACK
The “DDT fallback” is assumed as a functional entity (not necessarily an architecture element) 
in ISO 21448. This element is present in all the architectures discussed here, except the single-
channel architecture, in an explicit manner (channel-wise DCF, layer-wise DCF, DSM) and im-
plicitly through the multiple channels of the majority voting architecture.  

ARCHITECTURE IMPACT ON V&V
ISO 21448 acknowledges that a suitable architecture can support more efficient verification 
and validation by enabling a modular approach and reducing the effort for V&V of individual 
components (compare also G3: Testing and simulation of very high safety-related availability 
of large monolithic system and D1: Fault Containment Units). Diversity and independence argu-
ments (compare also D3: Diversity and redundancy for complex subsystems) are used, albeit in 
example form only and not as an integral part of the process to achieve SOTIF. 
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5.3.4 PROPOSED SUPPORTING STEPS FOR THE ADI IMPLEMENTATION
Potentially exceeding the standard ISO 26262 and ISO 21448 processes and reflecting the safe-
ty considerations from the previous sections, the following four development steps are sugges-
ted for the implementation of the described architectures of an L4 Highway Pilot:

STEP #1: SYSTEM PARTITIONING AND MAPPING
Partitioning the system into subsystems (see also D1: Fault Containment Units) that jointly imple-
ment the L4 Highway Pilot functionality is usually done as one integral step, to meet the system 
correctness goals, the availability goals and ensure feasibility of the ASIL D requirements. In 
fact, the presented architectures (except the Single-Channel architecture) largely anticipate 
this step, introducing redundancy to ensure system availability and checking instances to ensu-
re system correctness (integrity). 

The partitioned system architectures also serve as a basis for the formal ASIL decomposition; 
assignment of proper ASILs to the individual components is therefore necessary. We anticipate 
the following assignments: 

Develop-
ment step Goal Description

System 
Partitioning

System 
correctness 

Ensure correct system outputs (e.g., trajectories) under the envi-
ronmental and vehicle conditions:

• Doer-Checker configuration in Layer-wise and Channel-
wise DCF architectures

• Channels in Majority Voting architecture

• FUN/SFM/CSM in the DSM architecture 

System 
availability

Add redundancy to ensure availability of the system under com-
ponent failures

• Doer-Fallback configuration in Layer-wise and Channel-
wise DCF architectures

• Channels in Majority Voting architecture

• VSM and Primary/Secondary Networks in the DSM archi-
tecture 

ASIL D 
feasibility 

Further partition (modularize) the channels to enable ASIL D ca-
pable subsystems under HW and SW component constraints. 
This is usually not visible on the conceptual architecture level, 
but a necessary practical step in all architectures. Examples are: 

• Separate perception components per sensor

• Low-level vs. high-level fusion

• Trajectory planning and validation

• Voting and decision components 
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After the (logical) system partitioning and ASIL decomposition, the mapping of the components 
to available HW modules (SOCs) and SW partitions/operating systems needs to be performed, 
including selection of appropriate communication means between the components. This map-
ping will be largely guided by the functional demands (e.g., compute performance require-
ments of each logical component, network bandwidth required) and the available functional 
safety support by SOCs and the SW platform; it may be an iterative process until an optimum 
solution is found.
For the sake of generality, this report does not consider specific SOCs and SW platforms, and 
therefore does not dive into the mapping task further.

STEP #2: FORMAL MODELLING AND VERIFICATION
After the partitioning and mapping has been performed, a complex architecture with a signifi-
cant number of components and interaction may be the result. To validate the result, formal me-
thods can be used to deal with the potentially large, and often cognitively intractable number 
of system states and ensure the desired system properties with a mathematical proof.

Archi-
tecture ASIL Components

Single-
Channel  D Whole architecture

Majority 
Voter 
(1-oo-3)

B(D)²⁵ Channels

D Voter (also fail-operational)

Channel-
Wise DCF

B(D) CCDSS, MSS, CEHSS

D FTDSS (also fail-operational)

Layer-Wise 
DCF

B(D)

Primary/Safing Planners, Primary/Safing Planner Safing Gates, 
Primary/Safing Trajectory Executor, Primary/Safing Trajectory 
Executor Gates (some integration functionality between these 
nodes may be ASIL D, but is not explicitly visible)

D Priority Selector, Vehicle Control (also fail-operational)

DSM

B(D) FUN (Function), SFM (Sensor and Function Monitor), Primary 
Network, Secondary Network.

D CSM (Controller Safety Mechanism), VSM (Vehicle Safety Me-
chanism)

²⁵ Instead of the B(D) + B(D) decompositions, other variants are also possible where multiple components work together: A(D) + C(D) or QM(D) + 
D.the learning phase with its non-deterministic properties that stands in the way. The main problem to solve lies in the SOTIF domain, not in the 
functional safety.
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STEP #3: SUFFICIENT INDEPENDENCE ANALYSIS
The design goal D7: Mitigation of common-cause hazards purposefully prescribes introducing 
diversity on the architecture and implementation level. Nevertheless, in realistic implementati-
on scenarios, the redundant channels of the conceptual system architectures might be imple-
mented on homogeneous platforms (e.g., SoCs and OSs) and communication technologies. 
Also, the implementation of applications like AD algorithms might share a set of mathematical 
libraries, HW accelerator layers, etc. This might even be extended to joint perception and fusi-
on components used by the different channels. 
To achieve a sound safety argumentation, a systematic and detailed analysis of “sufficient in-
dependence” will need to be performed, to rule out common cause and cascading faults. Note 
that such an analysis will be necessary even if the components of each channel are sourced 
from different suppliers or implemented by different teams, as they might use identical third 
party components, derive from the same architecture specification (e.g., AUTOSAR), or use 
identical legacy IP blocks even within heterogeneous SOCs.

Develop-
ment step Goal Description

Formal 
Modeling 
and 
Validation

Logical consistency, 
correctness, and 
system availability

Create formal system model and formal description of 
desired properties, and simulate on logical (conceptual 
architecture) level

• Proof of desired properties

• Absence of violations of such properties (e.g., 
absence of single points of failure)

• Avoidance of unintended emergent behavior

Logical - physical 
consistency, system 
availability

Add formal modeling of the mapping of the logical 
building blocks to physical components and simulate 
on physical (implemented architecture) level

• Preservation of desired properties

• Absence of violations of such properties (e.g., ab-
sence of single points of failure under the physical 
mapping

Develop-
ment step Goal Description

Sufficient 
indepen-
dence 
analysis

Ensure system 
availability and 
correctness

Systematically analyze HW and SW architecture on 
platform and application level, including communicati-
on network.

• Prove absence of common cause faults in red-
undant elements, on platform and application 
level

• Prove absence of cascading faults across the 
ADI architecture
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STEP #4: MARKOV ANALYSIS
The overall failure rate needs to be determined and proven to be within a set target, usually 
around ASIL D metrics (10-⁸ /h) (compare section 2.2.7). For complex, fault-tolerant architectu-
res with redundant paths like the ones described in this report, one cannot simply add up the 
failure rates of the constituents but must consider their interaction. This amounts to describing 
the overall system’s states (like normal operation, degradation etc.) and their transition proba-
bilities (derived from the individual component failure rates) in a Markov model and calcula-
ting the resulting overall failure rate.

In addition to these supporting steps, the relevant standards like ISO 26262 and established 
engineering practices prescribe extensive testing and simulation for verifying the correctness, 
reliability and availability of complex AD systems and algorithms. For the use case of an SAE 
Level 4 Highway Pilot, these shall only be intensified compared to systems of lesser criticality. In 
this context, fault injection campaigns are of particular value and can challenge many design 
properties, such as sufficient independence of redundant channels, fault tolerance of arbiters 
and resilience of the overall systems against arbitrary faults in its components.

Develop-
ment step Goal Description

Markov 
analysis

Evaluate system 
failure rate

Model system states and transition probabilities from in-
dividual component failures; calculate overall failure 
rate.

• Calculate overall failure rate, considering FuSa 
and SOTIF 

• Meet target failure rate



110 www.the-autonomous.com

OUTLOOK
The further direction of the Safety & Architecture Working Group is still under discussion among 
the member companies of The Autonomous, and some of the potential work packages could 
be as follows:

• Extend the analysis to further use cases, such as SAE L5 or an Urban Pilot function, and 
see if and to what extent the evaluation of the relative merits and weaknesses of each ar-
chitecture changes.

• Extend the analysis to other architectures that recently appeared in the market and litera-
ture, such as self-checking pairs and the “Safety Shell” architecture [30]. 

• Deepen the analysis to include more implementation aspects, e.g., to propose concrete 
HW and SW mappings and suitable ECU and networking architectures.

• Extend the report with practical guidelines for implementation tasks, such as how to check 
on and ensure logical completeness and consistency of an architecture, or how to evalua-
te and quantify the independence of computation channels.

• Work out an “architecture evaluation guideline” from the experiences gained throughout 
the presented work, to help the industry community apply a similar framework in their con-
crete development projects.

Whatever the future direction, working on this report has been a hugely gratifying experience 
for the team, and we are confident that it provides value to the community of industry players 
and academic institutions working on automated driving systems.
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TERMINOLOGY
TERMINOLOGY FROM STANDARDS AND LITERATURE

The “Safety & Architecture” WG makes use of the terminology laid out in different industry stan-
dards and literature. Please refer to the listed standards for all terms not specifically defined in 
the following.

A small number of terms have been added as new definitions to clarify the scope of the “Safety 
& Architecture” WG.

For terms related to systems, faults, and failures, we use the following (in order of preference): 

• ISO 26262:2018 “Road vehicles – Functional safety” [2]

• IEC 61508:2010 “Functional safety of electrical/electronic/programmable safety-related 
systems” [47]

• ISO 21448:2022 “Road vehicles – Safety of the Intended Functionality” [3]

• Algirdas Avizienis, J-C. Laprie, Brian Randell, and Carl Landwehr. “Basic concepts and ta-
xonomy of dependable and secure computing.” IEEE transactions on dependable and se-
cure computing 1, no. 1 (2004) [1]

For terms related to AD, we use the following (in order of preference):

• ISO/SAE PAS 22736 “Taxonomy and definitions for terms related to driving automation sys-
tems for on-road motor vehicles” [48] (based on SAE J3016_202104 [7])

• BSI PAS 1883:2020 “Operational Design Domain (ODD) taxonomy for an automated dri-
ving system (ADS) - Specification” [49]

Please also refer to the relevant databases maintained by ISO and IEC:

• https://www.iso.org/obp/ui

• http://www.electropedia.org/
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Term Reference or definition Notes

AD Intelligence computational unit between the 
sensors and actuators

Architecture ISO 26262:2018-1

Automated Driving 
System (ADS) ISO/SAE PAS 22736

Availability ISO 26262:2018-1

Cascading failures ISO 26262:2018-1

•  In literature, one will often find the fol-
lowing differentiation: Failures of red-
undant systems due to systematic 
weaknesses of the architecture are 
caused by common cause initiators 
(CCI) and coupling faults (= ISO 26262 
cascading faults). In many standards 
this differentiation is not done, e.g., IEC 
61508-6:2010, Annex D: The term CCF 
is often used to cover all kinds of de-
pendent failures as it is done in this an-
nex. According to an Exida 2010 Safe-
tronic paper, ISO 26262 is the first 
standard to distinguish the two distinct 
phenomena.

Channel IEC 61508:2010-4

Common cause 
failure (CCF) ISO 26262:2018-1

Common mode 
failure (CMF) ISO 26262:2018-1

Conceptual 
architecture

An abstract, high-level architecture 
that does not specify technical 
(e.g., HW, SW) components.

•  This is similar to the “system architectu-
ral design” required as an external in-
put in ISO 26262:2018-3. 

Controllability ISO 26262:2018-1

Coupling factors ISO 26262:2018-1

Dependability Avizienis, TR 2004-47

The paper defines this as encompassing 
the following attributes (quote):
•  availability: readiness for correct ser-

vice [see also ISO 26262:2018-1]
•  reliability: continuity of correct service
•  safety: absence of catastrophic conse-

quences on the user(s) and the envi-
ronment [see also ISO 26262:2018-1]

•  integrity: absence of improper system 
alterations

•  maintainability: ability to undergo mo-
difications, and repairs 

Dependent failures ISO 26262:2018-1

Dependent failure 
initiator (DFI) ISO 26262:2018-1
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Term Reference or definition Notes

Diagnostic coverage 
(DC) ISO 26262:2018-1

•  In the context of ISO 26262, this only 
covers HW faults. For our purposes, we 
use the same term to cover SW faults 
as well, which goes hand in hand with 
the decision to quantify (systematic) 
SW faults.

Diversity ISO 26262:2018-1

Dual-point failure ISO 26262:2018-1

Dual-point fault ISO 26262:2018-1

Dynamic Driving 
Task (DDT) ISO/SAE PAS 22736

DDT fallback ISO/SAE PAS 22736

Dynamic elements BSI PAS 1883

Ego vehicle BSI PAS 1883 •  Used instead of “subject vehicle”.

Element ISO 26262:2018-1

Emergent behavior
Behavior that cannot be attributed to one 
individual system alone, but arises in the 
interplay of various systems, components 
etc.

Environmental 
conditions BSI PAS 1883

Error ISO 26262:2018-1

Failure ISO 26262:2018-1

Fault ISO 26262:2018-1

Fault-Containment 
Unit (FCU)

A Fault Containment Unit is a set of 
subsystems that shares one or more 
common resources that can be af-
fected by a single fault and is assu-
med to fail independently from 
other FCUs. [50]

•  The definition is very strict in the sense 
that any potential dependent failure 
(detected during the analysis of de-
pendent failures) between supposed 
FCUs would prove that they (by defini-
tion) are actually not FCUs.

•  The definition is interpreted to mean 
that potential dependent failures may 
exist between FCUs defined in the ar-
chitecture, but have to be mitigated by 
either reducing the probability of the 
root cause, reducing the coupling fac-
tors, or controlling their effects.

Formal verification ISO 26262:2018-1

Functional 
insufficiency ISO 21448:2022

Insufficiency of specification or perfor-
mance insufficiency. Both terms are also 
defined in ISO 21448:2022.

Interface Avizienis, TR 2004-47  [1]
•  The paper distinguishes between the 

“service interface” and the “use inter-
face”. 

Item ISO 26262:2018-1

Hazard ISO 26262:2018-1
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Term Reference or definition Notes

Malfunction ISO 26262:2018-1

•  Malfunctions can arise due to multiple 
causes, e.g., faults, performance limi-
tations [see also ISO 21448:2022], or 
unexpected behavior [see also ISO 
21448:2022].

Mapping
The process of transforming a con-
ceptual architecture into a techni-
cal HW and/or SW architecture.

•  The same conceptual architecture can 
be mapped to many different HW / SW 
solutions.

•  Certain considerations need to be ap-
plied during the mapping to ensure 
properties of the conceptual architec-
ture are not lost. 

Minimal Risk 
Condition (MRC) ISO/SAE PAS 22736

Minimal Risk Ma-
neuver (MRM) BSI PAS 1883

•  In a highway ODD, there are multiple 
possible MRMs, e.g., reducing speed 
and continuing to the next rest stop, 
pulling over to the emergency lane, or 
coming to a controlled stop in the cur-
rent lane. These differ by their inherent 
safety and the capability and timefra-
me necessary to execute them.

Misuse ISO 21448:2022

An example of a direct misuse is the acti-
vation of a highway pilot in an urban set-
ting. An example of an indirect misuse is a 
driver falling asleep and not monitoring an 
L2 system during operation.  

Monitor ISO/SAE PAS 22736

Object and Event 
Detection and 
Response (OEDR)

ISO/SAE PAS 22736

Operational Design 
Domain (ODD) ISO/SAE PAS 22736

Output insufficiency ISO 21448:2022

Passenger car ISO 26262:2018-1

Performance 
limitation ISO 21448:2022

Random hardware 
fault ISO 26262:2018-1

Request to intervene ISO/SAE PAS 22736

Routine/normal 
operation ISO/SAE PAS 22736

Safety ISO 26262:2018-1

Safety architecture ISO 26262:2018-1

Safety case ISO 26262:2018-1

Safety Element out 
of Context (SEooC) ISO 26262:2018-1
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Term Reference or definition Notes

Safety goal ISO 26262:2018-1

Scenery BSI PAS 1883

Service Avizienis, TR 2004-47

Severity ISO 26262:2018-1

System ISO 26262:2018-1

Systematic fault ISO 26262:2018-1

Triggering condition ISO 21448:2022

Validation ISO 26262:2018-1

Verification ISO 26262:2018-1

Vulnerable Road 
User (VRU) BSI PAS 1883
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LIST OF ABBREVIATIONS
Abbreviation Meaning

ACM Association for Computing Machinery

AD Automated / Autonomous Driving

ADI Automated Driving Intelligence

ADS Automated Driving System

AV Automated Vehicle

BIST Built-In Self-Test

CCDSS Computer-Controlled Driving Sub-System (in channel-wise DCF architecture)

CCF Common Cause Failure

CCI Common Cause Initiator

CEHSS Critical Event-Handling Sub-System (in channel-wise DCF architecture)

CSM Controller Safety Mechanism (in DSM architecture)

DC Diagnostic Coverage

DCF Doer / Checker / Fallback

DDT Dynamic Driving Task

DFA Dependent Failure Analysis

DFI Dependent Failure Initiator

DSM Distributed Safety Mechanism

ECU Electronic Control Unit

EOTI Emergency Operation Time Interval

FCU Fault-Containment Unit

FMEA Failure Mode and Effects Analysis

FSM Function Safety Monitor (in DSM architecture)

FTA Fault Tree Analysis

FTDSS Fault-Tolerant Decision Sub-System (in channel-wise DCF architecture)

FUN Function (in the DSM architecture)

HARA Hazard Analysis and Risk Assessment

HUD Heads-Up Display

HW Hardware

HWP Highway Pilot

IEC International Electrotechnical Commission

IEEE Institute for Electrical and Electronics Engineers

IMU Inertial measurement Unit

ISO International Organization for Standardization
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Abbreviation Meaning

KPI Key Performance Indicator

MRC Minimal Risk Condition

MRM Minimal Risk Maneuver

MSS Monitoring Sub-System (in channel-wise DCF architecture)

MTTF Mean Time to Failure

NHTSA National Highway Traffic Safety Administration

ODD Operational Design Domain

OEDR Object and Event Detection and Response

OEM Original Equipment Manufacturer

OS Operating System

SAE Society of Automotive Engineers

SaRA Safety-Related Availability

SEooC Safety Element out of Context

SEU Single-Event Upset

SoC System-on-Chip

SOTIF Safety of the Intended Functionality

SUV Sports Utility Vehicle

SW Software

VRU Vulnerable Road User

VSM Vehicle Safety Mechanism (in the DSM architecture)

V2X Vehicle-to-anything (vehicle, infrastructure)

WG Working Group
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APPENDICES
APPENDIX A: ODD OUTLINE OF REFERENCE AD USE 
CASE

Followed taxonomy

The HWP feature should only be active inside its defined Operational Design Domain (ODD), 
which is given by a set of conditions regarding its environment. We follow BSI PAS 1883:2020 
[49], which mostly covers the same attributes as the formalism (6 layers) of Project Pegasus [51] 
[52]. The HWP feature should refuse to activate if these are not met and should, if these are no 
longer met, prompt the driver to take back control within a convenient time span and in the 
meantime ensure safety, e.g., by bringing the vehicle to a safe stop. The ability to execute an 
MRM must be maintained even outside the ODD.

Scenery

ZONES

Attribute Sub-attribute (1) Sub-attribute (2) Capability

Zones

Geo-fenced areas Yes, as designated by OEM

Traffic management zones No

School zones No

Regions or states Yes, as designated by OEM

Interference zones
Dense foliage Yes (not close to driving path)

Tall buildings Yes
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DRIVABLE AREA
Attribute Sub-attribute (1) Sub-attribute (2) Sub-attribute (3) Capability

Drivable 
area

Drivable area 
type

Motorways (high-
ways) Yes, maximum 130 km/h

Radial roads No

Distributor roads No

Minor roads No

Slip roads No

Parking No

Shared space No

Drivable area 
geometry

Horizontal plane
Straight roads Yes

Curves Yes, maximum 1/100 m

Transverse plane 
(cross-section)

Divided / undivi-
ded Divided

Pavement No

Barrier on the 
edge

Types of lanes to-
gether

Longitudinal pla-
ne (vertical)

Up-slope Yes, maximum +4%

Down-slope Yes, maximum -4%

Level plane Yes

Lane specifica-
tion

Lane dimensions Minimum 3.5 m

Lane marking Yes, in good condition

Lane type

Bus lane
No (may be present, but 
must not be used during nor-
mal operation)

Traffic lane Yes

Cycle lane No

Tram lane No

Emergency lane
No (may be present, but 
must not be used during nor-
mal operation)

Other special 
purpose lane Yes, carpool lanes

Number of lanes Yes, minimum 2 lanes per di-
rection

Direction of travel Right-hand traffic Yes

Left-hand traffic No
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Additional assumptions:

• Changed road markings or reduced lane width are not supported.

• The speed limit is appropriate for the curve radius and slope of the road such that the en-
tire stopping distance is visible without occlusions (in the absence of other vehicles).

Attribute Sub-attribute (1) Sub-attribute (2) Sub-attribute (3) Capability

Drivable 
area

Drivable area 
signs

Information
Variable Yes, full-time and temporary

Uniform Yes, full-time and temporary

Regulatory
Variable Yes, full-time and temporary

Uniform Yes, full-time and temporary

Warning
Variable Yes, full-time and temporary

Uniform Yes, full-time and temporary

Drivable area 
edge

Line markers Yes

Shoulder (paved 
or gravel) Yes

Shoulder (grass) Yes

Solid barriers Yes, obligatory on left side

Temporary line 
markers No

None No

Drivable area 
surface

Surface type

Asphalt Yes

Concrete Yes

Cobblestone No

Gravel No

Granite setts No

Surface features

Cracks Yes, minor only

Potholes No, not in significant density

Ruts or swells Yes, minor only

Damage caused 
by weather Yes, minor only

Damage caused 
by traffic Yes, minor only

Induced conditi-
ons

Icy No, not to a significant extent

Flooded No

Mirage Yes

Snow No

Standing water No

Wet Yes

Contaminated Yes, minor only
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JUNCTIONS

ROAD STRUCTURES
Attribute Sub-attribute (1) Capability

Special structures

Automatic access control No

Bridges Yes

Pedestrian crossings No

Rail crossings No

Tunnels Yes, with separate driving directions

Toll plaza No

Fixed road struc-
tures

Buildings No

Streetlights Yes, but not required

Street furniture No

Vegetation No

Temporary road 
structures

Construction site detours No

Refuse collection No

Road works No

Road signage No

Attribute Sub-attribute (1) Sub-attribute (2) Sub-attribute (3) Capability

Junctions

Roundabout No

Intersection

T-junction No

Staggered No

Y-junction On-ramp and 
off-ramp No (except driving by)

Other No

Crossroads No

Grade-separated Interchange No

Other No
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ENVIRONMENTAL CONDITIONS

Additional assumptions:

• Not being warned of major road or traffic conditions is uncommon. We assume that the 
road layout is known ahead of time and that unexpectedly encountering challenging road 
or traffic conditions is uncommon as authorities are in charge of keeping the road in an 
acceptable state of repair and/or informing traffic participants (via signs, map data, an-
d/or V2X) if this is not the case.

• HD Maps are available for all supported highway segments.

Attribute Sub-attribute (1) Sub-attribute (2) Capability

Weather

Wind
Calm - fresh breeze (<10.7 m/s) Yes

Strong breeze (>10.7 m/s) - hurrica-
ne force No

Rainfall
Light rain (<2.5 mm/h) Yes

Moderate rain (>2.5 mm/h) - 
cloudburst No

Snowfall
Light snow (>1 km visibility) Yes

Moderate snow (<1 km visibility) - 
heavy snow No

Particulates

Marine No, not to significantly 
reduced visibility

Mist and fog No, not to significantly 
reduced visibility

Sand and dust No, not to significantly 
reduced visibility

Smoke and pollution No, not to significantly 
reduced visibility

Volcanic ash No, not to significantly 
reduced visibility

Illumination

Day Yes

Night or low-ambi-
ent

No, not to significantly 
reduced illumination

Cloudiness Clear - overcast Yes

Artificial illuminati-
on Yes

Connectivity

Communication

V2V, V2I Yes, at least intermittently

Cellular Yes, at least intermittently

Satellite No

DSRC and ITS-G5 No

Positioning

Galileo Yes, at least intermittently

GLONASS Yes, at least intermittently

GPS Yes, at least intermittently
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DYNAMIC ELEMENTS

Additional assumptions:

• All human traffic participants are aware that the highway is a restricted environment and 
act accordingly (responsibly).

Attribute Sub-attribute (1) Sub-attribute (2) Capability

Traffic

Density of agents
Dense traffic (including stop & go) Yes

Free-flow traffic (including no lead 
vehicle) Yes

Volume of traffic

Flow rate

Agent type

Cars Yes

Buses and trucks Yes

Motorbikes Yes

VRUs (pedestrians, bicyclists) Yes, to a very limited de-
gree

Animals Yes, to a very limited de-
gree

Minor static obstacles (lost load, 
debris, etc.) Yes

Major static obstacles (lost load, 
trees, rocks, etc.)

Yes, to a very limited de-
gree

Special vehicles Yes

Subject ve-
hicle (ego 
vehicle)

Behavior capabili-
ties

Ego vehicle speed 0-130 km/h

Lane change Yes

Lane merge Yes

Vehicle

All sensors and actuators in wor-
king condition Yes

Sensor or actuator non-operational No, except during MRM

Superficial body damage Yes

Moderate - major body damage No

Door or window open No

Low fuel or charge level No

Passengers

Driver not in driver seat No

Unbelted passenger No

Driver asleep or incapacitated No



128 www.the-autonomous.com

APPENDIX B: DETAILED DESCRIPTION OF THE CHAN-
NEL-WISE DCF ARCHITECTURE

This appendix provides additional details on the channel-wise Doer / Checker / Fallback con-
ceptual system architecture as described in section 3.5.1.

STRUCTURAL DETAILS
The subsystems in the channel-wise DCF architecture differ in their assumptions, failure modes, 
and estimated necessary Mean Time to Failure (MTTF, see Table 6). The interfaces between 
subsystems are described in Table 7 and data types in Table 8.

TABLE 6: COMPARISON OF SUBSYSTEMS IN THE CHANNEL-WISE DCF CONCEPTUAL SYSTEM 
ARCHITECTURE.

Subsystem Assumptions applying to 
failure mode

Failure mode assumpti-
on

Estimated ne-
cessary MTTF

Doer / CCDSS

• It is assumed that the 
vehicle is in opera-
ting condition.

• It is assumed that the 
ODD of the item is 
respected.

Authentication-detecta-
ble Byzantine [68]²⁶ 1000 h

Checker / MSS Authentication-detecta-
ble Byzantine 1000 h

Fallback / 
CEHSS

Authentication-detecta-
ble Byzantine 1000 demands²⁷

Redundancy 
management / 
FTDSS

• It is assumed that the 
HW of the FTDSS is 
correct²⁸.

• It is assumed that the 
SW of the FTDSS is 
correct.

²⁶ Failure mode assumptions range (from most to least restrictive) [68]: fail-stop, crash, omission (fail-silent), performance, authentication-
detectable Byzantine, Byzantine (fail-arbitrary). Byzantine failures are fully arbitrary and can appear different to different receivers. Authentication-
detectable Byzantine failures have the restriction that they cannot spoof other systems’ messages.
²⁷ The Fallback is not continuously in control of the vehicle and only acts on demand. Therefore, its MTTF is not given per time, but per demands.
²⁸ To achieve fault tolerance, the FTDSS consists of two instances: FTDSS A and FTDSS B.
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TABLE 7: INTERFACES IN THE CHANNEL-WISE DCF CONCEPTUAL SYSTEM ARCHITECTURE. 
EXTERNAL INTERFACES OF THE AD INTELLIGENCE ARE SHADED ORANGE.

# Sender Receiver Data type Periodicity

1 Sensor System CCDSS SensorData
Sensor-dependent, 
event-driven (~10-100 
ms)

2 Sensor System MSS SensorData Sensor-dependent

3 Sensor System CEHSS SensorData Sensor-dependent

4 Diagnostics 
System CCDSS SystemStatus Main cycle, time-driven 

(~50 ms)

5 UI System CCDSS UserInput Event-driven

6 CCDSS MSS ActuatorData Main cycle

7 CCDSS FTDSS A ActuatorData Main cycle

8 CCDSS FTDSS B ActuatorData Main cycle

9 CCDSS UI System UserInformation Main cycle

10 CCDSS Sensor System SensorControl Main cycle

11 CCDSS Diagnostics System DiagnosticsData Main cycle

12 MSS FTDSS A ValidationResults Main cycle

13 MSS FTDSS B ValidationResults Main cycle

14 MSS CCDSS ValidationResults Main cycle

15 MSS Diagnostics System DiagnosticsData Main cycle

16 CEHSS FTDSS A ActuatorData Main cycle

17 CEHSS FTDSS B ActuatorData Main cycle

18 CEHSS Sensor System SensorControl Main cycle

19 CEHSS Diagnostics System DiagnosticsData Main cycle

20 FTDSS A Actuator System ActuatorData Main cycle

21 FTDSS A MSS ActuatorData Main cycle

22 FTDSS A MSS ActuatorData Main cycle

23 FTDSS A Diagnostics System DiagnosticsData Main cycle

24 FTDSS B Actuator System ActuatorData Main cycle

25 FTDSS B MSS ActuatorData Main cycle

26 FTDSS B MSS ActuatorData Main cycle

27 FTDSS B Diagnostics System DiagnosticsData Main cycle
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TABLE 8: DATA TYPES IN THE CHANNEL-WISE DCF CONCEPTUAL SYSTEM ARCHITECTURE.

BEHAVIORAL DETAILS
The rough function of the different subsystems in the channel-wise DCF architecture is descri-
bed in pseudo-code in Table 9.

TABLE 9: PSEUDO-CODE FOR THE CHANNEL-WISE DCF CONCEPTUAL SYSTEM ARCHITECTURE 
WITH INTERFACE IDS IN PARENTHESES.

Subsystem States Behavior

CCDSS

• Nominal

• Degraded

• Internal fault

Receive sensor data (#1)
Receive system status (#4)
Receive validation results (#14) from last cycle
IF (more than N out of last M CEHSS validation results are FALSE or not re-
ceived) OR (system status NOK)
    # too frequent transient faults are treated as a permanent fault
    Go to degraded state
IF (nominal state)
    Plan nominal trajectory
ELIF (degraded state)
    Plan degraded trajectory
IF (NOT internal fault state)
    Generate corresponding actuator setpoints
    Send trajectory and setpoints (#6, #7, #8)
Report subsystem status (#11)
IF (internal fault in execution or communication detected)
    Go to internal fault state (remain silent)

# Data type Interfaces Periodicity

1 SensorData 1, 2, 3

2 SystemStatus 4

3 UserInput 5

4 ActuatorData

6, 7, 8, 16, 
17, 20, 21, 
22, 24, 25, 
26

• Trajectory (timed sequence of waypoints 
for next ~1-3 sec)

• Actuator setpoints (timed sequence of 
desired accelerations / decelerations and 
curvatures for next ~1-3 sec)

• Priority of producing subsystem (CCDSS > 
CEHSS)

• Incremental iteration counter

5 UserInformation 9

6 SensorControl 10, 18

7 DiagnosticsData 11, 15, 19, 
23, 27

8 ValidationResults 12, 13, 14

• CCDSS validation result (true / false)

• CEHSS validation result (true / false)

• Incremental iteration counter
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Subsystem States Behavior

MSS
• Functional

• Internal fault

Receive sensor data (#2)
Generate environment model
Receive actuator data for CCDSS (#6, #21, #25) and CEHSS (#22, #26)
IF (functional state)
    IF (all CCDSS sets are received) AND (all CCDSS sets are identical)
        # this can catch some Byzantine faults
        Run CCDSS evaluation (TRUE / FALSE)
    ELSE
        CCDSS evaluation is FALSE
    IF (all CEHSS sets are received) AND (all CEHSS sets are identical)
        Run CEHSS evaluation (TRUE / FALSE)
    ELSE
        CEHSS evaluation is FALSE
    Send validation results (#12, #13)
Report subsystem status (#15)
IF (internal fault in execution or communication detected)
    Go to internal fault state (remain silent)

CEHSS
• Functional

• Internal fault

Receive sensor data (#3)
IF (functional state)
    Plan degraded trajectory
    Generate corresponding actuator setpoints
    Send trajectory and setpoints (#16, #17)
Report subsystem status (#19)
IF (internal fault in execution or communication detected)
    Go to internal fault state (remain silent)

FTDSS A
• Functional

• Internal fault

Receive CCDSS actuator data (#7)
Receive CEHSS actuator data (#16)
Forward CCDSS actuator data (#21)
Forward CEHSS actuator data (#22)
Receive validation results (#12)
IF (CCDSS set received)
    IF (CEHSS set received)
        IF (CCDSS set valid)
            Select CCDSS set
        ELSE
            # transient faults can be masked
            Select CEHSS set
   ELSE
       Select CCDSS set
ELSE
    IF (CEHSS set received)
        Select CEHSS set
Forward selected actuator data (#20)
Report subsystem status (#23)
IF (internal fault in execution or communication detected)
    Go to internal fault state (remain silent)

FTDSS B
• Functional

• Internal fault

Same as for FTDSS B, except using interfaces (#8, #13, #17, #24, #25, #26, 
#27) instead of (#7, #12, #16, #20, #21, #22, #23). 
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Figure 22: Activity diagram for the channel-wise Doer / Checker / Fallback 
conceptual system architecture.
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APPENDIX C: SAMPLE ANALYSIS POINTS REGARDING 
DIFFERENT CONCEPTUAL ARCHITECTURE PATTERNS 

This appendix provides additional details on the design principle D7: Mitigation of common-
cause hazards, section 1.5.2. 

The dimensions introduced in Figure 6 can be exemplified by conceptually applying them to a 
selection of architecture patterns. Functional complexity is indicated by the depth of the slice, 
while the implemented capabilities’ coverage of an operational domain is indicated by the 
surface area. Holes are therefore representative of an absence of capability.

Figure 23: Channel dimensioning as per conceptual pattern of selected architecture candidates

Given the selected architecture patterns in Figure 23, the following relative observations can 
be made: 

• Single-channel architectures can be expected to have significantly complex implementati-
ons to meet the functional requirements of advanced use cases. 

▪ Errors and output insufficiency within the implementation is not complemented or 
offset by the capability of another channel; a fallback capability is not available. 

• TMR (triple-modular-redundancy) architectures typically offer redundancy of the same 
functionality, hence the equal depth of each slice and diverse location of errors to prevent 
unavailability of the function. 

▪ Nevertheless, the redundant functions may all contain the same output insufficiencies 
and therefore offer no prevention of common-cause functional insufficiency hazards. 

▪ Even the diverse implementation of the functionality aiming to achieve non-common 
cause output insufficiencies could struggle with inexact agreement when handling 
the individual channel outputs.  

▪ A fallback capability beyond the nominal functionality within the intended ODD is not 
available, as indicated by the equal areas of each slice. 

• Doer-checker-fallback architectures typically propose the diverse implementation of a 
complex performance channel and its complementary checker channel, hence the un-
equal depth of the slices and diverse location of holes. 

▪ A fallback capability beyond the nominal functionality is offered by a basic channel 
capable of offering minimum-risk-maneuver in conditions beyond the ODD; the area 
of which could be considered analogous to something like the Target Operational 
Domain (TOD). 
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