
1

SAFETY &
ARCHITECTURE
Working Group
Digest Report

2

THE AUTONOMOUS
The Autonomous is the global community shaping the future of safe autonomous mobility.
Initiated by TTTech Auto, The Autonomous is an open platform bringing together the leading
executives and experts of the autonomous mobility ecosystem to align on relevant safety
subjects. The primary objective of The Autonomous is to cultivate fresh insights and tech-
nological breakthroughs within the realm of autonomous mobility. To accomplish this, The
Autonomous has established two strategic streams of action:

1.	 EVENT STREAM

facilitates insightful discussions and networking opportunities for leading executives
and experts from the autonomous mobility ecosystem.

2.	 INNOVATION STREAM

fosters cooperation across the industry, nurturing the development of globally recogni-
zed reference solutions tailored to address safety challenges. These reference solutions
align with pertinent standards, serving as a catalyst for the widespread adoption of
safe autonomous mobility on a global scale. The Innovation Stream entails the launch
and facilitation of Working Groups and Expert Circles serving as collaborative plat-
forms for the creation of recommended practices and tangible advancements.

The full report of the Safety & Architecture Working Group will be
published at the end of 2023. The present document is a digest
summarizing the content and key findings. Please refer to the full
report for the detailed discussion.

ABOUT THE REPORT

3

THE SAFETY &
ARCHITECTURE
WORKING GROUP

It is commonly understood and accepted that the development and imple-
mentation of a failure-free automated driving system for complex driving
tasks is a huge challenge. Even when developed to the highest standards,
complex HW and SW elements will exhibit faults that can materialize in
an arbitrary way. Still, the overall autonomous driving system needs to
tolerate such faults and keep up operation at least for a minimum time
frame – i.e., it needs to be fail-operational.

In the Safety & Architecture Working Group, members of international re-
search institutes and industrial companies came together to discuss what
the conceptual system architecture of an automated vehicle (SAE Level 4
and higher) could look like, in order to address the functional and safety
challenges of automated driving.

The group first convened in June 2021 and is now, two years later, ready to
deliver its report. In this time, we have outlined our reference use case of an
SAE L4 Highway Pilot, researched the market and the literature for publicly
available information about AD architectures, and tried to derive and do-
cument the key properties of these published architectures. Finally, we have
compared the architectures with respect to a set of key criteria we consider
crucial (such as availability, robustness, and security).

OUR MEMBERS

4

Our work was structured in three major report increments that were ac-
companied by industry and academic experts as external reviewers. Con-
tributions were partly created offline by individual members and reviewed
and discussed by the whole team; numerous topics were also first intense-
ly discussed in informal meetings and later put in writing. Weekly remote
meetings were held to track progress, clarify open points, and align on
next steps. When needed and possible, this was supplemented by regular
in-person workshops. Despite the general travel situation around the pan-
demic, we worked together with remarkable coherency and team spirit,
ultimately achieving what we believe is the first survey of its kind.

The intended readers of the report are so-called system owners, who
make architectural decisions and ensure consistency on many different
abstraction levels, from high-level conceptual architectures to low-level
physical implementations. Our intention is to support them in making such
decisions and building up a safety argumentation.

For the Safety & Architecture Working Group, we have chosen what we
call the conceptual abstraction level (see illustration on the left). Here, the
system is composed of a small set of well-encapsulated subsystems that
fail independently (so-called “Fault Containment Units” or FCUs), which
can comprise an entire processing channel (from sensors to actuators).

PURPOSE, ABSTRACTION
LEVEL, AND REFERENCE
AD USE CASE

Act

Sense

Th
in

k
=

A
ut

om
at

ed
 D

riv
in

g
In

te
lli

ge
nc

e

5

•	� Conceptual architectures are sufficiently generic to be applicable
to most system owners, irrespective of commercial or implementation
considerations.

•	 �They are also sufficiently non-trivial to bring a benefit to system
owners, providing solutions to the question of how to manage
sufficiently independent redundancy.

We have outlined a reference AD use case to act as a backdrop for deriving
system requirements, assumptions, and design principles applicable to
conceptual system architectures. For this, we have chosen an assumed
SAE L4 Highway Pilot feature. Not only are such features expected within
the next few years and need to deal with complex traffic situations, but
more importantly they also imply high availability requirements. These
necessitate non-trivial system architectures and therefore pose a new
challenge.

SAE Level 4 130
km/h

6

SYSTEM REQUIREMENTS,
ASSUMPTIONS, AND
DESIGN PRINCIPLES
The Safety & Architecture Working Group primarily considers a system
providing AD functionality, which we call the Automated Driving
Intelligence (ADI). This system covers all cognitive tasks previously
performed by the driver. A simplified representation is shown on the left,
illustrating the four other systems the ADI is connected to, as well as the
elements that “close the loop” with the physical environment.

There are several system requirements applying to the ADI that ensure the
safety of commands to control the vehicle. In addition to the correctness
of commands, their availability is now also safety-relevant. These are
summarized in the table below.

Physical environment

D
ri

ve
r &

 p
as

se
ng

er
s

Ex
te

rn
al

 s
ys

te
m

s
&

cl
ou

d

AD
Intelligence

Sensor
System

Actuator
System

UI
System

Diagnostics
System

Vehicle

S1 ADI output timeliness

S2 ADI output availability

S3 ADI output correctness

S4 ADI output consistency

S5 Perception malfunction detection

S6 Driver monitoring

S7 ADI diagnostics

7

When coming up with conceptual system architectures intended to satisfy
these system requirements, several aspects should be considered:

•	� Certain basic technological limitations constrain how ultra-high relia-
bility systems can be designed, built using realistic HW and SW com-
ponents, and tested. We have identified 10 such general constraints.
Examples are limitations to achieving safety via testing or to avoiding
design faults in large and complex monolithic systems.

•	� In addition, there is a set of empirical best practices that should be re-
spected in a sound conceptual system architecture. We have identified
7 such design principles. These include, for example, using well-encap-
sulated subsystems (the FCUs mentioned before), preventing emergent
behavior by limiting interactions between subsystems, and mitigating
common-cause hazards by adapting the Swiss cheese model.

In the following section, we describe each architecture’s structure and
behavior, based on our interpretation of the respective source material
(scientific paper or patent). We have identified three broad categories of
conceptual system architectures:

1. ��MONOLITHIC ARCHITECTURES
present the status quo for SAE L2 ADAS and
serve as the baseline for the evaluation.

2. SYMMETRIC ARCHITECTURES
rely on multiple channels providing the same
or similar functions, often with some voting
mechanism for arbitration.

3. ASYMMETRIC ARCHITECTURES
employ asymmetric decompositions to redu-
ce the complexity of some subsystems, e.g.,
via Doer / Checker or Active / Hot Stand-By
patterns.

CANDIDATE
ARCHITECTURES

8

The candidate conceptual system architectures we collected from indus-
try and academia share several underlying patterns:

•	� The Voting or Arbitration pattern manages redundancy by voting bet-
ween equal channels. The Agreement pattern is similar, but without
an external arbitrator.

•	� The Doer / Checker pattern asymmetrically decomposes (for correct-
ness) a channel into a Doer performing the function and a Checker
approving it.

•	� The Active / Hot Stand-By pattern asymmetrically decomposes (for
availability) into a preferred Active channel and – if that is not availa-
ble – a Fallback channel.

The sole representative of the monolithic architectures is the Single Channel
architecture. We based our description on the architecture presented by
AUDI in 2015, which at the time introduced the first system intended to go
beyond SAE L2 into the area of automated driving.

This was done with a single ECU, which can be seen as a single-chan-
nel or monolithic architecture. In such an architecture, a single failure of

Subsystem 2 Arbiter

...

Subsystem 1
output

output

Switch

Hot Stand-By

Active
output

output

Decider

Checker

Doer
output

yes/no

9

a component can lead to system-level failure. The functional behavior of
such a system can be described as follows:

1.	� It processes received sensor data into a consistent environment model.

2.	� Then it periodically generates trajectories and corresponding actuator
setpoints.

3.	� These setpoints are then sent to the actuator system.

4.	� If an internal fault is detected, the system fails silently (with a message
to the driver that the system is unavailable).

Act

Sense

Advanced Driver
Assistance SystemTh

in
k

Due to the underlying use case of an SAE L3 Traffic Jam Pilot (low speed
and a restrained environment), the safety requirements are noticeably dif-
ferent from most AD use cases with respect to integrity (i.e., complex func-
tionality does not need to reach the highest ASIL) and availability (i.e., the
system does not need to provide complex fallback functionality in case of
a fault).

We consider Tesla‘s „Full Self Driving“ (FSD) another more recent imple-
mentation of a single-channel architecture (as far as can be judged from
available documentation).

10

The sole considered representative of the symmetric architectures is
the Majority Voting architecture. We based our description on [1]. This
conceptual system architecture consists of the following principles:

•	� A multi-channel architecture
with a voter and at least three
channels.

•	� Each of the channels is
capable of performing the
nominal driving function, i.e.,
can generate trajectories
and corresponding actuator
setpoints.

•	� The voter assumes that the
majority is correct. It compares

	 (exactly or inexactly) the results from the channels and forwards the
	 majority opinion to the actuators. If all three results differ, no decision
	 can be made.

•	� To achieve fault tolerance, multiple instances of the voter may be
necessary.

The first of the considered asymmetric architectures is the Channel-Wise
Doer/Checker/Fallback architecture. We based our description on [2].

This conceptual system architec-
ture consists of the following prin-
ciples:

•	� The Doer performs the nomi-
nal driving function and can
resemble an SAE L2+ system.

•	� The Fallback performs only
Minimum Risk Maneuvers and
is only in control of the vehicle
if the Doer has failed.

•	� The Checker validates the outputs of the Doer and Fallback and sends
the results (safe / unsafe) to the Selector.

Act

Sense

Majority Voter

Channel
1

Channel
2

Channel
3

Th
in

k

Act

Sense

Selector

Doer Checker FallbackTh
in

k

11

•	� The Selector forwards either the commands from the Doer or those
from the Fallback to the actuators, depending on the results from the
Checker. It is so simple and low in performance requirements that it
can be fully verified to preclude systematic faults. To achieve fault
tolerance, it consists of two identical instances. Each subsystem forms
an FCU to ensure sufficient independence.

•	� Doer, Checker, and Fallback can fail arbitrarily and are implemented
in a diverse way to minimize common-cause failures. A time-triggered
architecture facilitates the redundancy management (cycle-by-cycle)
and minimizes interactions between subsystems.

•	� A faulty Doer is detected by the Checker. The Selector then quickly
switches to forwarding the Fallback’s commands to the actuators.

•	� If any other subsystem is found to be faulty, the Doer is sent into a
degraded mode, which can involve handing back control to the driver
and/or ultimately performing a Minimum Risk Maneuver.

The second considered asymmetric architecture is the Layer-Wise
Doer/Checker/Fallback architecture. We based its description on our
interpretation of the patent [3].

This conceptual system architecture consists of the following principles:

•	� A multi-channel approach,
in which at least a “primary”
and a “safing” channel are
present.

•	� The safing channel provides a
degraded mode of operation
in case the primary channel
fails.

•	� An arbiter “Priority Selector”
determines the output to
be sent to the actuators,
depending on the states of
the channels.

Act

Sense

Additional layers

Priority Selector

Primary

Primary Safety Gate

Safing

Safing Safety GateTh
in

k

12

•	� Each channel consists of multiple Doer/Checker pairs, one for each
layer or stage of the Sense-Plan-Act model.

•	� The Doers may have low safety integrity levels and may each fail
arbitrarily.

•	� The Checkers are high safety integrity components responsible for
checking the outputs of the Doers. A Checker fails silently when it
detects unsafe outputs of the corresponding Doer. If a check of the
safing channel fails, both primary and safing outputs are inhibited,
and a buffered safe trajectory is used. After a time window passes
without a correct input from the safing channel, an emergency stop is
executed.

•	� The arbiter is a high safety integrity component, simpler than the Checkers.
It must continue to operate in the presence of failures to deliver either the
primary, the safing output or to trigger an emergency stop. It may fail
silently so long as that failure triggers an emergency stop.

•	� To strengthen the argumentation for sufficient independence, e.g.,
with respect to shared information input and exchange of information,
we recommend to explicitly encapsulate the channels in FCUs.

The third considered asymmetric architecture is the Distributed Safety
Mechanism architecture, as described in [4], which can be seen as a
distributed variant of the Doer/Checker/Fallback approach.

This conceptual system architecture consists of the following principles:

•	� The architecture is composed
of three channels, each of
them containing safety moni-
tors.

•	� The nominal channel, consis-
ting of the function itself con-
trolled by a Function Monitor.

•	� The emergency channel,
which is controlled by a Con-
troller Safety Mechanism.

Act

Sense

Fu
nc

tio
n

Fu
nc

tio
n

M
on

ito
r

C
on

tr
ol

le
r S

af
et

y
M

ec
ha

ni
sm

V
eh

ic
le

 S
af

et
y

M
ec

ha
ni

sm

Th
in

k

13

•	� The safety channel, which is controlled by the Vehicle Safety
Mechanism.

•	� The Function Monitor may have a low safety integrity and is
responsible for checking SOTIF issues and monitoring the status of the
corresponding function. It fails silently.

•	� The Controller Safety Mechanism has a medium safety integrity and
is responsible for monitoring all the function controllers (including
hardware and software platforms) and the Vehicle Safety Mechanism.
It can send control commands to the vehicle actuators in case of a
detour or emergency stop.

•	� The Vehicle Safety Mechanism has a high safety integrity and is
responsible for monitoring the communication networks and the
Controller Safety Mechanism. It can send control commands to the
vehicle actuators in case of comfort or safe stop, by using independent
sensor data. It fails silently.

•	� To strengthen the argumentation for sufficient independence, e.g.,
with respect to shared HW resources, we recommend to explicitly
encapsulate the channels in FCUs.

14

ARCHITECTURE
EVALUATION
METHODOLOGY, CRITERIA,
AND FINDINGS

� Availability

� Availability of the system

Degradation Scheme

The evaluation of candidate architectures was conducted with respect
to several key criteria that the team aligned on:

To what extent would the
architecture support the fail-
operational property, i.e., enable
safe operation even in the case
of unavoidable electronic or
software faults?

Would continuity of the nominal
functionality be well supported,
to help ensure a positive user
experience, e.g., by avoiding
function degradation?

Reliability

�Availability of the nominal
functionality

Diagnostics Scheme

15

Would the architecture be
susceptible to security threats,
or would it support resilience
measures against attacks?

� Cybersecurity

Interactions between
subsystems

Interactions with
external systems

� Scalability

Scalability towards higher
availability

Scalability towards
different offering levels

SOTIF

Support to accommodate
functional insufficiencies

Support to manage
operational conditions

� Simplicity

Number, complexity and
performance of subsystems

Required diversity

Complexity of validation

To what extent would cost-
efficient downscaling to lower
SAE levels (for vehicle options),
or upscaling to higher SAE levels
(for future enhancements) be
supported?

Would the architecture be
conceptually simple, to
support modular development,
verification, and validation?

Safety of the Intended Functio-
nality: would the architecture
help ensure robustness and safe
operation in the presence of func-
tional imperfections and unavoi-
dable edge cases?

16

The evaluation was performed in several steps: To form an unbiased
basis for the evaluation, we started with a generic evaluation of each
architecture, by listing observations related to each criterion, i.e.,
properties of each architecture perceived by the team. Next, we evaluated
the relative significance of the above criteria for the selected use case of
an SAE L4 Highway Pilot. Finally, we directly compared the architectures,
considering the observed properties from the generic evaluation and
inferring merits or weaknesses with respect to each evaluation criterion,
and ranking them under that criterion.

As a result, it turned out that the asymmetric architectures are generally
preferable to symmetric ones. By virtue of their inherent diversity of
computational streams, they exhibit more robustness with respect to
availability, cybersecurity, and SOTIF because the channels complement
each other and tend to mutually compensate their potential weaknesses.
The asymmetric architectures also offer more options with respect to
scalability, as omitting channels quite naturally leads to lower SAE level
functionality, and higher levels can be reached by adding channels.
Superficially, they might appear more complex and less reliable (in the
sense of keeping the intended functionality) than symmetric architectures.
However, their diversity actually facilitates modular development and
independent verification of the channels, which in turn is expected to lead
to lower development costs and enhanced reliability.

The symmetric architectures, such as voting approaches, were seen as
highly susceptible to common cause deficiencies that might impact all
channels at the same time – be it from the functional safety, SOTIF, or
even the cybersecurity perspective. If this problem is addressed by
heterogeneous channel implementations (e.g., different chipsets),
then the feasibility of voting is questionable since channels might come
to different but equally valid solutions. Finally, the monolithic single-
channel architecture is not seen as a feasible solution: it does not fulfill
any of the criteria without additional internal redundancy and supervision
mechanisms that are introduced during implementation. This would make
it evolve into one of the other architectures.

17

For further refinement of the conceptual system architecture into hardware
solutions with redundant channels, dependent failures of the hardware
elements are an important aspect to consider. In other words, freedom from
interference between channels and the absence of common hardware
elements for redundant channels needs to be ensured. We discussed
dependent failure initiators and provided hints on how to overcome them.

Similarly, we considered selected topics related to the further refinement
of the conceptual system architecture into a software safety concept.
This included a discussion on different software architectural styles
– depending on the use case – as well as common safety measures.
Considering the increasing number and complexity of software elements
required for automated driving systems, we briefly discussed the relevant
aspects of software reuse, software updates, real-time operating systems,
machine learning, and software tool qualification.

To achieve a sound safety argumentation for the chosen architectures,
we referred to the relevant safety standards, in particular ISO 26262
and ISO 21448. For instance, the partitioning provided by the presented
architectures can also be understood as an ASIL decomposition in the sense
of ISO 26262. We proposed advanced methods like formal verification on
the architecture level and for the logical-to-physical mapping, as well
as probabilistic methods to quantify the residual faults of components, to
meet an ASIL D target for the system availability.

IMPLEMENTATION
CONSIDERATIONS

18

The further direction of the Safety & Architecture Working Group is still
under discussion among the member companies of The Autonomous, and
some of the potential work packages could be as follows:

•	� Extend the analysis to further use cases, such as SAE L5 or an Urban
Pilot function, and see if and to what extent the outcome of the
evaluation of each architecture’s relative merits and weaknesses
changes.

•	� Extend the analysis to other architectures that seem to evolve in the
market, such as self-checking pairs.

•	� Deepen the analysis to include more implementation aspects, e.g.,
to propose concrete HW and SW mappings and suitable ECU and
networking architectures.

•	� Extend the report with practical guidelines, such as how to check on
and ensure logical completeness and consistency of an architecture,
or how to evaluate and quantify the independence of computation
channels.

•	� Work out an “architecture evaluation guideline” from the experiences
gained throughout the presented work, to help the industry community
apply a similar framework in their concrete development projects.

Whatever the future direction, working on this report has been a hugely
gratifying experience for the team, and we hope that it provides good
value to the community of industry players and academic institutions
working on automated driving systems.

NEXT STEPS

19

REFERENCES
[1] 	� M. L. Shooman, „Reliability of computer systems and networks: fault tolerance, analysis

and design,“ in N-Modular Redundancy, Wiley-Interscience, 2002, pp. 145-201.

[2] 	� H. Kopetz, „An Architecture for Safe Driving Automation,“ in Principles of System
Design, Springer, 2023.

[3] 	� M. Wagner, J. Ray, A. Kane and P. Koopman, „A safety architecture for autonomous
vehicles“. Patent EP3400676B1, 2017.

[4] 	� Y. Fu, A. Terechko, J. Groote and A. Saberi, „A formally verified fail-operational safety
concept for automated driving,“ SAE Intl.,
pp. 7-21, 17 Jan 2022.

[5] 	� A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, „Basic concepts and taxonomy
of dependable and secure computing,“ IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, 2004.

INDEX

20

